James R. Bull * and Michiel C. Loedolff
Department of Chemistry, University of Cape Town, Rondebosch 7700, South Africa

Abstract

Conjugate alkylation of 3-methoxyestra-1,3,5(10), 15-tetraen-17-one 1 leads to 15β-alkyl 17-ketones 2 (Me, Et or Pri'), which are converted, via palladium acetate-mediated dehydrosilylation of their derived silyl enol ethers, into the corresponding 15 -alkyl $\Delta^{15}-17$-ketones 5 . Conjugate alkylation of these intermediates results in formation of 15,15 -dialkyl 17 -ketones 10 , which undergo stereoselective reduction with lithium aluminium hydride, and deprotection of C-3 to give 15,15-dialkyl analogues 12 of estradiol. Spectroscopic data are presented to demonstrate that substrates 1 and 5 undergo exclusive 15ß-alkylation.

Introduction

The finding that a $14 \alpha, 17 \alpha$-ethano bridge confers superior oral estrogenicity upon estradiol and estriol analogues, ${ }^{1.2}$ has stimulated interest in studying the influence of bridged structures and alkyl residues in ring D upon biological activity of steroidal hormones. Alkyl residues at C-15 feature in numerous recent studies entailing structural modification of steroidal hormones. We were surprised not to find any evidence for previous work on the synthesis of 15,15 -dialkyl steroids. As part of an investigation into structure-activity relationships in ring D-modified 19 -norsteroids, the synthesis of 15,15 dialkylestradiols was undertaken. In particular, we sought a method for sequential and stereocontrolled introduction of the respective alkyl groups at $\mathrm{C}-15$, in order to synthesize structural variants, upon which the influence of α - and β-face chain extension or branching on biological activity could be evaluated.
The most expeditious route to this objective appeared to require sequential conjugate alkylation-dehydrogenation of 3 -methoxyestra-1,3,5(10), 15 -tetraen-17-one 1. Conjugate alkylation of the resultant 15 -alkyl Δ^{15}-17-ketones was expected to lead to stereodefined 15,15-dialkyl analogues of estrone 3-methyl ether and hence the target hormone analogues.

Conjugate methylation of compound $\mathbf{1}$ has been reported, ${ }^{3}$ and there are several accounts of Michael-type additions to steroidal $\Delta^{15}-17$-ketones leading to 15β-substituted 17 ketones. ${ }^{4}$ Although the stereoselectivity of these conjugate additions is reportedly high, a recent paper ${ }^{5}$ has claimed a significant loss of stereoselectivity accompanying coppercatalysed Grignard reaction of chain-extended nucleophiles to enone 1. Furthermore, it was argued ${ }^{5}$ that the major reaction pathway entails 15α-alkylation, in apparent contradiction of the conclusions reached in earlier investigations.

Results and discussion

In the first instance, we re-examined conjugate methylation of the $\Delta^{15}-17$-ketone 1 , with the intention of applying recent adaptations of organocuprate methodology in order to trap the 15β-methyl enolate intermediate for subsequent dehydrogenation to the 15 -methyl Δ^{15}-17-ketone 5a. Treatment of enone 1 with lithium dimethylcuprate(I) proceeded rapidly in dry tetrahydrofuran (THF) at $0^{\circ} \mathrm{C}$, to give the 15β-methyl $17-$ ketone $\mathbf{2 a}(60 \%)$ accompanied by a product (31%) formulated as the bisteroid 3 (Scheme 1). The properties of compound 2a accord with those reported in previous studies, ${ }^{3}$ and the assignment of the 15 -configuration was rigorously established (see below). The oily bisteroid $\mathbf{3}$ displayed NMR characteristics consistent with the assigned structure, and was independently

5a-c

8

Scheme 1 Reagents and conditions: i, $\mathrm{Me}_{2} \mathrm{CuLi}, 0^{\circ} \mathrm{C}(\mathrm{R}=\mathrm{Me})$ or $\mathrm{RMgX}, \mathrm{CuI}, 0-20^{\circ} \mathrm{C}\left(\mathrm{R}=\mathrm{Et}, \mathrm{Pr}^{1}\right) ; \mathrm{ii}, \mathrm{Me}_{2} \mathrm{CuLi}, \mathrm{Me}_{3} \mathrm{SiCl},-78^{\circ} \mathrm{C}$ $(\mathrm{R}=\mathrm{Me})$; iii, LDA, $\mathrm{Me}_{3} \mathrm{SiCl},-78$ to $20^{\circ} \mathrm{C}$; iv, $1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}, 20^{\circ} \mathrm{C}$; $\mathrm{v}, \mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{MeCN}$, reflux; vi, $\mathrm{CuBr}_{2}, \mathrm{MeOH}, \mathrm{C}_{6} \mathrm{H}_{6}$, reflux; vii, LDA, $\mathrm{Me}_{3} \mathrm{SiCl},-78$ to $20^{\circ} \mathrm{C}$; then $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SeCl}, \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$; viii, $\mathrm{LiBr}, \mathrm{Li}_{2} \mathrm{CO}_{3}$, DMF, reflux; ix, $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0-20^{\circ} \mathrm{C}$; x, Li, NH_{3}
synthesized through treatment of the 15β-methyl 17 -ketone 2a with lithium diisopropylamide (LDA) in THF at $0^{\circ} \mathrm{C}$, followed by addition of the Δ^{15}-17-ketone 1 . The configurational assignments at C-16 and C-15' in dimer $\mathbf{3}$ could not be verified but are stereoelectronically appropriate.
Competing substrate-product condensations appear to be rare during organocuprate reactions with enones, ${ }^{6}$ and the facility of this process here reflects the unusually high Michael electrophilicity of the Δ^{15}-17-ketone 1 . Attempts to suppress formation of this undesired by-product by very slow addition of enone 1 to lithium dimethylcuprate(I) in THF at $-78^{\circ} \mathrm{C}$ were only partially successful, leading to the required addition product 2a (82%) and dimer $3(13 \%)$. However, when the reaction was conducted in THF at $-78^{\circ} \mathrm{C}$, in the presence of boron trifluoride-diethyl ether complex or chlorotrimethylsilane and triethylamine, conjugate methylation proceeded
cleanly and efficiently ($\geqslant 90 \%$). The silyl enol ether intermediate 4a obtained in the latter experiment was hydrolysed during work-up in order to simplify comparative studies, but could be used directly for subsequent transformations (see below).

Cognate syntheses of the 15β-ethyl and 15β-isopropyl 17ketones $\mathbf{2 b}$ and $\mathbf{2 c}$ proceeded efficiently and stereoselectively using appropriate variations of copper-catalysed Grignard methodology on the $\Delta^{15}-17$-ketone 1 . Further conversion of the 15β-alkyl 17 -ketones 2 into the corresponding 15 -alkyl Δ^{15}-17ketones 5 was readily achieved through dehydrosilylation ${ }^{7}$ of the derived silyl enol ethers 4 (directly isolated in the case of compound 4a, otherwise ohtained through low-temperature trapping of LDA-generated enolates of compounds 2 with chlorotrimethylsilane) in the presence of palladium(II) acetate in refluxing acetonitrile. The overall efficiency of conversion of the Δ^{15}-17-ketone 1 into the corresponding 15 -alkyl Δ^{15}-17ketones 5 was 75% or better.
Other methods for achieving formal dehydrogenation of the 15β-methyl 17 -ketone $\mathbf{2 a}$ were briefly examined and discarded. For example, bromination of compound 2 a proceeded efficiently with copper(II) bromide in refluxing benzenemethanol ($1: 1$) to give a single product formulated as the 16α bromo compound $6(82 \%)$. The structure of product 6 was evident from distinctive ${ }^{1} \mathrm{H}$ NMR signals at $\delta 2.75(1 \mathrm{H}$, quint d, $J 4 \times 7.7$ and 1.8 Hz) and $4.37(1 \mathrm{H}, \mathrm{d}, J 1.8 \mathrm{~Hz}$), which defined the relative orientation of the 15 - and 16 -substituents, and is, incidentally, uniquely compatible with 15β-methyl configuration. However, the unfavourable orientation of the 16substituent for elimination was confirmed by treatment of compound 6 with lithium carbonate-lithium bromide in refluxing dimethylformamide (DMF), which proceeded slowly to give a poor yield of the 15 -methyl Δ^{15}-17-ketone 5 a (13%) accompanied by uncharacterised isomeric material. Since a syn-elimination protocol might be expected to proceed more favourably, the silyl enol ether 4 a was treated with benzeneselenenyl chloride and boron trifluoride-diethyl ether complex in dry THF (-78 to $0^{\circ} \mathrm{C}$) to give the non-crystalline 16α-phenylselanyl 17 -ketone 7. However, in situ treatment of the reaction mixture with hydrogen peroxide at $25^{\circ} \mathrm{C}$ resulted in only a moderate yield of the 15 -methyl Δ^{15}-17-ketone 5a (40%), accompanied by a product formulated as the unsaturated δ-lactone $8(45 \%$) on the basis of spectroscopic data and analogy. ${ }^{8}$ It is noteworthy, however, that selenide 7 appears to be less susceptible to the secondary Baeyer-Villiger oxidation than does the analogous intermediate derived from estrone 3-methyl ether, which gave only the corresponding unsaturated lactone. ${ }^{8}$
The foregoing results clearly demonstrate the superiority of the conjugate alkylation-dehydrosilylation sequence for the preparation of the 15 -alkyl $\Delta^{15}-17$-ketones 5 . In an additional series of experiments, it was shown that reduction of these products 5 with lithium in liquid ammonia-THF proceeds efficiently and stereoselectively to give the corresponding 15 α alkyl 17-ketones 9, which proved useful in comparative spectroscopic studies (see below).

With the 15 -alkyl Δ^{15}-17-ketones 5a-c in hand, conjugate methylations were conducted using lithium dimethylcuprate(I) or methylmagnesium iodide in the presence of copper(I) iodide, to give the corresponding 15,15 -dialkyl 17 -ketones 10a-c (Scheme 2). Similarly, conjugate ethylation of the 15 -methyl Δ^{15}-17-ketone 5a and of the 15 -ethyl Δ^{15}-17-ketone $\mathbf{5 b}$ gave the 15β-ethyl-15 α-methyl 17 -ketone $\mathbf{1 0 d}$ and the 15,15 -diethyl 17 ketone $\mathbf{1 0 e}$ respectively. These reactions proceeded efficiently (80%), and the high stereoselectivity during formation of products $\mathbf{1 0 b}$-d was evident from the purity of the products isolated. Spectroscopic evidence (see below) supported the assumption of β-directed alkylation of the 15 -alkyl Δ^{15}-17ketones 5.

Hydride reduction of the 17 -ketones 10a-e gave the corresponding 17β-alcohols 11a-e. These reactions were

Scheme 2 Reagents and conditions: i, $\mathrm{Me}_{2} \mathrm{CuLi}, 0^{\circ} \mathrm{C}(\mathrm{R}=\mathrm{Me}, \mathbf{1 0 a}-\mathrm{c})$ or $\mathrm{EtMgBr}, \mathrm{CuI}(\mathrm{R}=\mathrm{Et}, 10 \mathrm{~d}-\mathrm{e})$; ii, $\mathrm{LAH}, 0^{\circ} \mathrm{C}$; iii, DIBAH, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}$, reflux
uniformly efficient and stereoselective, and the configurational assignments at $\mathrm{C}-17$ were readily deduced from characteristic signals for the 17α-proton at $\delta 3.54-3.74$ (typically, dd, $J \sim 9$ and 8 Hz). The 17β-alcohols $11 \mathrm{a}-\mathrm{e}$ were deprotected at $\mathrm{C}-3$ [diisobutylaluminium hydride (DIBAH) in refluxing toluene ${ }^{9}$] to give the 15,15 -dialkyl analogues 12a-e of estradiol. These compounds have been subjected to biological evaluation,* which has revealed that not only does the 15,15 -dimethyl compound 12a display highly competitive binding to the estradiol receptor, but that it is also an orally active estrogen. By contrast, the homologues 12b-d display severely diminished affinity toward the estradiol receptor, a result which has intriguing implications for structure-activity relationships in this series. Further investigations are in progress.

The configurational assignments made in this study rely upon the well established precedent for stereoelectronically favoured 15β-alkylation of the $\Delta^{15}-17$-ketone $1,,^{3.4}$ and the reasonable assumption that this stereoselectivity also prevails during conjugate alkylation of the corresponding 15 -alkyl Δ^{15}-17ketones 5. The claimed anomaly, ${ }^{5}$ of favoured 15α-alkylation during copper(I -catalysed addition of extended-chain Grignard reagents to compound 1 , prompted an examination of the spectroscopic data for the 15-alkyl 17-ketones 2 and 9 and the corresponding 15,15 -dialkyl 17 -ketones $\mathbf{1 0}$, for evidence to support the configurational assignments.

A selection of ${ }^{1} \mathrm{H}$ NMR data for the 15 -alkyl and $15,15-$ dialkyl 17-ketones (Table 1) revealed self-consistent patterns of chemical shifts and coupling constants for the 15β - and $15 \alpha-$ alkyl isomers. The $16-\mathrm{H}_{2}$ signals of the 15β-alkyl 17 -ketones 2a-c resonated within a narrow range ($\delta \sim 2.3-2.5$) and, although their near-coalescence and signal overlap in the case of the 15β-methyl 17 -ketone 2 a precluded extraction of firstorder data, a chemical-shift correlation (COSY) plot revealed the coupling connectivity of the 8 -, $14-15$ - and 16 -protons and confirmed the assignment of $J_{14 \alpha, 15 \alpha} 6.8 \mathrm{~Hz}$. This requires a near-gauche relationship between $14 \alpha-$ and $15-\mathrm{H}$ and, necessarily, a β-configuration for the 15 -methyl group. By contrast, the $14 \alpha-\mathrm{H}$ signals in the 15α-alkyl 17 -ketones $9 \mathrm{a}-\mathrm{c}$ revealed $J_{14 \alpha, 15 \beta}$-values of $\sim 10.8 \mathrm{~Hz}$ arising from the antiperiplanar relationship between 14α - and $15 \beta-\mathrm{H}$.

The ${ }^{1} \mathrm{H}$ NMR data for the 15,15 -dialkyl ketones 10a-e uncovered no direct evidence for confirmation of the 15 configuration of the isomers $\mathbf{1 0 b}-\mathbf{d}$ and hence, the assumed, β entry of reagent during conjugate alkylation of the 15 -alkyl $\Delta^{15}-17$-ketones $5 \mathrm{a}-\mathrm{c}$. The ${ }^{13} \mathrm{C}$ NMR data for the 15 -alkyl 17ketones (Table 2) were generally self-consistent, and displayed the expected $\alpha-, \beta$ - and γ-shifts associated with 15 -substitution, but were not amenable to additive estimates of ${ }^{13} \mathrm{C}$ chemical shifts in the 15,15 -dialkyl 17 -ketones. This is probably attributable to variation in rotameric preferences of the 15 ethyl and 15 -isopropyl groups in response to mono- or di-substitution at $\mathrm{C}-15$.

The most compelling evidence for the assigned structures of

[^0]| Compound | Signal ${ }^{\text {a }}$ | | | |
| :---: | :---: | :---: | :---: | :---: |
| | $13 \beta-\mathrm{Me}$ | $14 \alpha-\mathrm{H}$ | $16 \alpha-\mathrm{H}$ | 16ß-H |
| 2a $15 \beta-\mathrm{Me}$ | 1.07 | 168 (dd, 11.3, 6.8) | 2.51 obsc. | 2.30 obsc. |
| 2b $15 \beta-\mathrm{Et}$ | 1.02 | 1.73 (m) | 2.43 (dd, 19.4, 7.8) | 2.37 (dd, 19.4, 2.5) |
| 2c $15 \beta-\mathrm{Pr}^{\text {i }}$ | 1.08 | 1.77 (dd, 11.8, 6.0) | 2.44 (dd, 19.2, 7.0) | 2.38 (dd, 19.2, 3.1) |
| 9a $15 \alpha-\mathrm{Me}$ | 0.95 | $1.22(\mathrm{t}, 2 \times 10.8)$ | 1.73 (dd, 19.3, 8.4) | 2.77 (dd, 19.3, 8.7) |
| 9b $15 \alpha-\mathrm{Et}$ | 0.97 | $1.29(\mathrm{t}, 2 \times 10.7)$ | 1.79 (dd, 19.4, 7.9) | 2.78 (dd, 19.4, 8.8) |
| 9c $15 \alpha-\mathrm{Pr}^{\text {i }}$ | 0.97 | $1.45(\mathrm{t}, 2 \times 10.8)$ | 1.95 (dd, 18.5, 7.7) | 2.42 (dd, 18.5, 8.5) |
| 10a 15,15-Me ${ }_{2}$ | 1.10 | 1.47 (d, 10.9) | 2.09 (d, 19.4) | 2.61 (d, 19.4) |
| 10b $15 \alpha-\mathrm{Et}, 15 \beta-\mathrm{Me}$ | 1.12 | 1.48 (d, 11.0) | 2.18 (d, 19.4) | 2.44 (d, 19.4) |
| 10c $15 \alpha-\mathrm{Pr}^{i}, 15 \beta-\mathrm{Me}$ | 1.13 | 1.49 (d, 10.1) | 2.20 (d, 19.4) | 2.26 (d, 19.4) |
| 10d 15x-Me, 15 β-Et | 1.09 | 1.49 (d, 10.1) | 1.87 (d, 19.3) | 2.80 (d, 19.3) |
| 10e $15,15-\mathrm{Et}_{2}$ | 1.10 | 1.49 (d, 10.1) | 1.95 (d, 19.6) | 2.64 (d, 19.6) |

${ }^{a}$ Given as chemical shift δ / ppm (multiplicity, J / Hz); operational details are described in the Experimental section.
the 15,15-dialkyl compounds was obtained through comparison of the nuclear Overhauser enhancement (NOESY) spectra of the epimers 10b and 10d. The 15α-ethyl 15β-methyl 17 -ketone 10b displayed cross-peaks for $16 \beta-\mathrm{H} / 15 \beta-\mathrm{Me}$ and $16 \alpha-\mathrm{H} / 15 \alpha-$ $\mathrm{CH}_{2} \mathrm{Me}$, whereas the 15β-ethyl 15α-methyl 17-ketone 10d displayed cross-peaks for $13 \beta-\mathrm{Me} / 15 \beta-\mathrm{CH}_{2} \mathrm{Me}$ and $16 \alpha-\mathrm{H} /$ $15 \alpha-\mathrm{Me}$. These NOEs can arise through only syn-relationships between the interacting protons.

An examination of the chiroptical properties of the 15 -alkyl and 15,15-dialkyl 17-ketones was also undertaken, in search of a diagnostic probe for configurational assignments. However, CD data (Table 3) revealed that the influence of different 15alkyl groups upon the magnitude of the Cotton effect for the 17CO group is variable. Thus, the negative increment of $\Delta \Delta \varepsilon-$ 0.59 for the 15β-methyl 17-ketone 2a accords with the predicted magnitude of an octant-dissignate contribution by a β-removed axial methyl group in conformationally comparable cyclopentanones, ${ }^{10}$ whereas that of the 15β-ethyl 17 -ketone $\mathbf{2 b}$ is also octant-dissignate but attenuated. By contrast, the increment for the 15β-isopropyl 17 -ketone $\mathbf{2 c}$ is strongly octant-consignate. The $15 x$-alkyl 17-ketones $9 \mathbf{a - c}$ all display negative, therefore octant-consignate increments, but that of the 15α-isopropyl 17-ketone 9c is amplified.

Despite these variations, the summed increments for the appropriate pairs of epimeric 15 -alkyl 17 -ketones were compared with those observed for the corresponding 15,15dialkyl 17-ketones, in an attempt to discern an empirically useful trend in support of configurational assignments. However, the correlation is tenuous (Table 3), and clearly inadequate for the intended purpose. The uncertain effect of chain extension or branching upon the ' β-alkyl effect' in cyclopentanones, ${ }^{10}$ and the attendant influence of monoalkyl vs. dialkyl substitution upon rotameric preferences of the 15 ethyl and 15 -isopropyl group, evidently detract from the reliability of this method for configurational assignment in the limited number of compounds examined here.

Experimental

Mps were determined on a Reichert-Jung Thermovar apparatus and are uncorrected. Unless otherwise stated, spectra were recorded as follows: IR, Perkin-Elmer 983, chloroform solutions; ${ }^{1} \mathrm{H}$ NMR, Varian VXR $(200 \mathrm{MHz})$ and Varian Unity (400 MHz), deuteriochloroform solutions (J-values are given in Hz) ${ }^{13} \mathrm{C}$ NMR, Varian VXR (50 MHz) or Varian Unity (100 MHz), deuteriochloroform solutions; mass spectra (electronimpact), VG Micromass 16 F ; CD, JASCO J-20, methanol solutions. Optical rotations were measured on a Perkin-Elmer 141 polarimeter for chloroform solutions at $20^{\circ} \mathrm{C}$, and $[\alpha]_{\mathrm{D}^{-}}$ values are given in $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. Microanalyses were performed on a Carlo Erba EA 1108 instrument.

Silica gel for chromatography refers to Merck Kieselgel 60, $63-200 \mu \mathrm{~m}$ (gravity) or $40-63 \mu \mathrm{~m}$ (flash)

Conjugate alkylations of 3-methoxyestra-1,3,5(10), 15-tetraen-

 17-one 1(a) Ethereal $1.4 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ methyllithium $\left(26 \mathrm{~cm}^{3}, 36.4 \mathrm{mmol}\right)$ was added to a stirred slurry of copper(I) iodide ($3.43 \mathrm{~g}, 18.0$ mmol) in dry diethyl ether $\left(20 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. To the resultant clear solution of lithium dimethylcuprate(1) was added a solution of the Δ^{15}-17-ketone $1(4.24 \mathrm{~g}, 15.0 \mathrm{mmol})$ in dry tetrahydrofuran (THF) $\left(100 \mathrm{~cm}^{3}\right)$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 min , then saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}\left(60 \mathrm{~cm}^{3}\right)$ was added. The residue (4.38 g) obtained upon work-up (EtOAc) comprised two components (TLC). Chromatography on silica gel (200 g) with ethyl acetate-hexane ($1: 4$) as eluent gave 3-methoxy-15ß-methylestra-1,3,5(10)-trien-17-one 2a $(2.70 \mathrm{~g}$, 60%), mp $127-129{ }^{\circ} \mathrm{C}$ (from $\mathrm{Me}_{2} \mathrm{CO}-\mathrm{MeOH}$) (lit., ${ }^{3}$ 122$\left.124^{\circ} \mathrm{C}\right) ;[\alpha]_{\mathrm{D}}+74\left(c 1.0, \mathrm{CHCl}_{3}\right.$) (Found: C, $80.7 ; \mathrm{H}, 8.6 ; \mathrm{M}^{+}$, 298. $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{2}$ requires $\left.\mathrm{C}, 80.5 ; \mathrm{H}, 8.8 \% ; \mathrm{M}, 298\right) ; \Delta \varepsilon_{\text {max }}+2.83$ $(295 \mathrm{~nm}) ; v_{\text {max }} / \mathrm{cm}^{-1} 1725(\mathrm{CO}) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.07(3 \mathrm{H}, \mathrm{s}, 13 \beta-$ $\mathrm{Me}), 1.16(3 \mathrm{H}, \mathrm{d}, J, 7.4,15 \beta-\mathrm{Me}), 1.68(1 \mathrm{H}, \mathrm{dd}, J 11.3$ and 6.8 , $14 \alpha-\mathrm{H}), 1.75(1 \mathrm{H}, \mathrm{qd}, J 3 \times 11.3$ and $2.9,8 \beta-\mathrm{H}), 1.89(1 \mathrm{H}, \mathrm{dt}, J$ 11.6 and $2 \times 2.3,12 \beta-\mathrm{H}), 2.09(1 \mathrm{H}$, ddt, $J 12.7,5.7$ and $2 \times 2.9,7 \beta-\mathrm{H}), 2.30$ and 2.51 (each 1 H , obsc m, 16- H_{2}), $2.55(1$ $\mathrm{H}, \mathrm{m}, 15 \alpha-\mathrm{H}), 2.91\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 3.79(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OMe}), 6.69$ $(1 \mathrm{H}, \mathrm{d}, J 2.7,4-\mathrm{H}), 6.73(1 \mathrm{H}, \mathrm{dd}, J 8.6$ and $2.7,2-\mathrm{H})$ and 7.21 ($1 \mathrm{H}, \mathrm{d}, J 8.6,1-\mathrm{H}$), followed by 3-methoxy-16 α-[3-methoxy-17-oxoestra-1,3,5(10)-trien-15 5 -yl]-15 3 -methylestra-1,3,5(10)-trien-17-one $3(1.36 \mathrm{~g} ; 31 \%)$ as an oil, $[\alpha]_{\mathrm{D}}+131\left(c 1.0, \mathrm{CHCl}_{3}\right)$ (Found: C, 80.2; $\mathrm{H}, 8.4 ; \mathrm{M}^{+}, 580 . \mathrm{C}_{39} \mathrm{H}_{48} \mathrm{O}_{4}$ requires $\mathrm{C}, 80.65$; $\mathrm{H}, 8.3 \% ; \mathrm{M}, 580) ; v_{\max } / \mathrm{cm}^{1} 1727(\mathrm{CO}) ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 1.05$ and 1.11 (each $3 \mathrm{H}, \mathrm{s}, 13 \beta$ - and $\left.13^{\prime} \beta-\mathrm{Me}\right), 1.18$ ($3 \mathrm{H}, \mathrm{d}, J 7.4,15 \beta-$ $\mathrm{Me}), 2.91\left(4 \mathrm{H}, \mathrm{m}, 6-\mathrm{and} 6^{\prime}-\mathrm{H}_{2}\right), 3.81\left(6 \mathrm{H}, \mathrm{s}, 3\right.$ - and 3^{\prime}-OMe), $6.69\left(2 \mathrm{H}, \mathrm{d}, J 2.7,4-\right.$ and $\left.4^{\prime}-\mathrm{H}\right), 6.73(2 \mathrm{H}$, dd, $J 8.6$ and $2.7,2-$ and $\left.2^{\prime}-\mathrm{H}\right)$ and $7.21\left(2 \mathrm{H}, \mathrm{d}, J 8.6,1-\right.$ and $\left.1^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}(50 \mathrm{MHz}) 16.4$ (q, $15 \beta-\mathrm{Me}$) 17.2 and $19.0\left(\mathrm{q}, \mathrm{C}-18\right.$ and $\left.-18^{\prime}\right), 25.6$ (t, C-11 and -11^{\prime}), 26.7 and 26.8 ($\mathrm{t}, \mathrm{C}-7$ and -7^{\prime}), 29.3 and 29.4 ($\mathrm{t}, \mathrm{C}-6$ and -6^{\prime}), 33.9 (d, C-15 and -15'), 34.2 and 35.0 (t, C-12 and -12'), 35.5 and 35.8 ($\mathrm{d}, \mathrm{C}-8$ and -8^{\prime}), 36.2 and 41.6 ($\mathrm{t}, \mathrm{C}-16$ and -16^{\prime}) 44.4 and 44.9 (d, C-9 and -9^{\prime}), 46.6 and 47.5 (s, C-13 and -13^{\prime}), 51.9 and 54.5 (d, C-14 and -14^{\prime}), 55.2 ($\mathrm{q}, 3-$ and 3^{\prime}-OMe), 111.4 and 111.5 (d, C-2 and -2^{\prime}), 113.9 (d, C-4 and -4^{\prime}), 125.9 (d, C-1 and -1^{\prime}), 132.2 and 132.3 (s, C-10 and -10^{\prime}), 137.6 and 138.0 (s, C-5 and -5^{\prime}), 157.7 (s, C-3 and -3') and 221.2 and 221.6 (s, C-17 and -17').
(b) A solution of lithium dimethylcuprate(I) $(0.63 \mathrm{mmol})$ in dry diethyl ether $\left(1 \mathrm{~cm}^{3}\right)$ [prepared from copper(I) iodide (120 $\mathrm{mg}, 0.63 \mathrm{mmol})$ and ethereal $1.6 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ methyllithium $(0.75$ $\left.\left.\mathrm{cm}^{3}, 1.20 \mathrm{mmol}\right)\right]$ was cooled to $-78^{\circ} \mathrm{C}$. Triethylamine $(0.1$ $\left.\mathrm{cm}^{3}, 0.8 \mathrm{mmol}\right)$ and chlorotrimethylsilane $\left(0.1 \mathrm{~cm}^{3}, 0.72 \mathrm{mmol}\right)$ were added, followed by a solution of the Δ^{15}-17-ketone 1 (84 $\mathrm{mg}, 0.30 \mathrm{mmol})$ in dry THF $\left(4 \mathrm{~cm}^{3}\right)$. After 5 min at $-78^{\circ} \mathrm{C}$ the
Table $2{ }^{13} \mathrm{C}$ NMR Data for 15 -alkyl and 15 , 15 -dialkyl compounds

Compound	Chemical shift (δ_{C})																			
	C-1	C-2	C-3	C-4	C-5	C-6	C-7	C-8	C-9	C-10	C-11	C-12	C-13	C-14	C-15	C-16	C-17	C-18	3-OMe	Other
17-Ketones																				
2a $15 \beta-\mathrm{Me}$	126.0	111.4	157.7	113.9	137.8	29.5	26.8	36.0	44.5	132.5	25.6	34.1	47.5	52.3	27.7	44.8	221.3	17.9	55.2	17.0 (15 β-Me)
2b $15 \beta-\mathrm{Et}$	126.0	111.4	157.7	113.9	137.8	29.5	26.8	36.0	44.6	132.4	25.6	34.0	47.1	52.9	36.5	42.2	221.4	17.8	55.2	13.9 (15 $\beta-\mathrm{CH}_{2} \mathrm{Me}$), $23.8\left(15 \beta-\mathrm{CH}_{2} \mathrm{Me}\right)$
2c $15 \beta-\mathrm{Pr}^{\text {i }}$	126.0	111.4	157.7	113.9	137.9	29.5	28.2	32.3	45.0	132.4	25.4	34.8	46.5	55.5	45.5	42.4	220.8	17.4	55.2	$\begin{aligned} & 21.8,24.3\left(15 \beta-\mathrm{CHMe} e_{2}\right), 38.0 \\ & \left(15 \beta-\mathrm{CHMe}_{2}\right) \end{aligned}$
9a 15α-Me	126.7	111.7	157.5	113.5	137.4	29.8	26.5	39.6	44.2	131.9	27.7	31.7	50.8	57.2	30.8	47.5	220.1	15.8	55.2	22.0 ($15 \alpha-\mathrm{Me}$)
9b 15 α-Et	126.8	111.8	157.5	113.5	137.4	29.9	27.8	37.8	44.2	131.9	26.5	31.6	50.3	54.5	39.7	42.7	220.2	15.7	55.2	12.4 ($15 \alpha-\mathrm{CH}_{2} \mathrm{Me}$), 30.0 ($15 \alpha-\mathrm{CH}_{2} \mathrm{Me}$)
9c $15 x-\mathrm{Pr}^{\text {i }}$	126.8	111.7	157.5	113.5	137.4	30.1	27.4	39.9	44.4	132.0	26.4	31.8	50.1	50.6	41.7	35.7	220.1	15.6	55.2	$\begin{aligned} & 14.9,27.7\left(15 \alpha-\mathrm{CHMe} e_{2}\right), 28.5 \\ & \left(15 \alpha-\mathrm{CHMe}_{2}\right) \end{aligned}$
10a $15,15-\mathrm{Me}_{2}$	126.4	111.6	157.6	113.6	137.4	29.8	28.2	37.5	44.9	132.2	26.0	34.2	50.2	58.4	35.5	53.6	221.4	17.9	55.2	24.5, 34.6 ($15,15-\mathrm{Me}_{2}$)
10b $15 \alpha-\mathrm{Et}, 15 \beta-\mathrm{Me}$	126.5	111.6	157.6	113.6	137.4	29.9	28.3	37.8	44.9	132.2	26.1	34.2	50.0	56.6	38.9	49.8	220.4	18.2	55.2	$\begin{aligned} & 9.4\left(15 \alpha-\mathrm{CH}_{2} \mathrm{Me}\right), 21.8\left(15 \alpha-\mathrm{CH}_{2} \mathrm{Me}\right), \\ & 30.3(15 \beta-\mathrm{Me}) \end{aligned}$
10c $15 \alpha-\operatorname{Pr}^{\text {i }}$, $15 \beta-\mathrm{Me}$	126.4	111.6	157.6	113.6	137.4	30.0	27.8	37.7	45.0	132.3	26.1	34.5	49.9	51.6	41.5	44.6	220.3	17.8	55.2	$\begin{aligned} & 18.4,18.8\left(15 \alpha-\mathrm{CH} \mathrm{Me}_{2}\right), 23.0(15 \beta-\mathrm{Me}) \text {, } \\ & 36.9\left(15 \alpha-\mathrm{CHM}_{2}\right) \end{aligned}$
10d $15 \alpha-\mathrm{Me}, 15 \beta$-Et	126.4	111.6	157.6	113.6	137.4	29.8	28.6	37.3	45.1	132.3	27.4	34.4	49.8	59.8	39.4	48.9	220.3	18.3	55.2	$\begin{aligned} & 9.0\left(15 \beta-\mathrm{CH}_{2} \mathrm{Me}\right), 25.9\left(15 \beta-\mathrm{CH}_{2} \mathrm{Me}\right) \text {, } \\ & 30.3(15 \alpha-\mathrm{Me}) \end{aligned}$
10e $15,15-\mathrm{Et}_{2}$	126.4	111.6	157.6	113.6	137.4	29.9	27.8	37.5	45.0	132.3	25.9	34.3	49.5	52.6	42.1	44.7	220.5	18.3	55.2	$\begin{aligned} & 9.1\left(2 \times 15-\mathrm{CH}_{2} \mathrm{Me}\right), 28.1,32.7 \\ & \left(2 \times 15-\mathrm{CH}_{2} \mathrm{Me}\right) \end{aligned}$
Δ^{15}-17-Ketones																				
5b $15-\mathrm{Et}$	126.2	111.6	157.5	113.6	137.3	29.4	27.3	37.0	45.3	132.1	25.6	28.0	52.6	57.0	181.1	125.7	212.2	21.5	55.2	11.6 (15-CH2 Ce), 29.2 ($15-\mathrm{CH}_{2} \mathrm{Me}$)
5c $15-\mathrm{Pr}^{\text {i }}$	126.3	111.6	157.7	113.6	137.2	29.1	28.1	30.8	45.4	132.2	25.6	29.7	52.6	56.3	185.7	123.9	212.4	21.1	55.2	$\begin{aligned} & 21.6,21.7\left(15-\mathrm{CHMe} e_{2}\right), 30.3 \\ & \left(15-\mathrm{CHMe}_{2}\right) \end{aligned}$
178-Alcohols																				
11a 15,15-Me ${ }_{2}$	126.3	111.4	157.5	113.6	137.7	29.9	28.5	37.1	44.9	132.9	26.1	38.8	45.6	58.1	36.2	50.1	79.8	13.5	55.2	25.6,35.0 (15,15-Me ${ }_{2}$)
11b $15 \alpha-\mathrm{Et}, 15 \beta-\mathrm{Me}$	126.3	111.4	157.5	113.6	137.7	29.9	28.6	37.1	45.0	133.0	26.1	38.9	45.3	55.6	39.7	45.6	80.2	13.9	55.2	$\begin{aligned} & 9.4\left(15 \alpha-\mathrm{CH}_{2} \mathrm{Me}\right), 23.7(15 \beta-\mathrm{Me}), 37.7 \\ & \left(15 \alpha-\mathrm{CH}_{2} \mathrm{Me}\right) \end{aligned}$
11c $15 \alpha-\mathrm{Pr}^{\mathrm{i}}, 15 \beta-\mathrm{Me}$	126.3	111.4	157.7	113.6	137.6	29.9	28.5	37.3	45.0	133.0	26.2	39.3	44.7	51.8	42.7	40.7	80.8	14.1	55.2	18.2, 18.6 ($15 \alpha-\mathrm{CH} \mathrm{Me}_{2}$), 23.1 ($15 \beta-\mathrm{Me}$), 36.6 ($15 \alpha-\mathrm{CHMe}_{2}$)
11d $15 \alpha-\mathrm{Me}, 15 \beta-\mathrm{Et}$	126.2	111.4	157.5	113.6	137.7	29.9	28.6	36.8	45.2	133.0	25.9	39.0	45.3	59.6	40.0	45.4	80.0	13.9	55.2	$\begin{aligned} & 8.6\left(15 \beta-\mathrm{CH}_{2} M e\right), 29.0(15 \alpha-\mathrm{Me}), 30.3 \\ & \left(15 \beta-\mathrm{CH}_{2} \mathrm{Me}\right) \end{aligned}$
11e $15,15-\mathrm{Et}_{2}$	126.2	111.4	157.5	113.6	137.7	29.8	28.6	36.9	44.7	133.1	26.0	39.2	45.1	51.2	43.1	41.6	80.7	14.2	55.2	$\begin{aligned} & 8.3,9.2\left(2 \times 15-\mathrm{CH}_{2} \mathrm{Me}\right), 28.7,31.9 \\ & \left(2 \times 15-\mathrm{CH}_{2} \mathrm{Me}\right) \end{aligned}$

Table 3 CD data for the 15-alkyl and 15,15-dialkyl 17-ketones ${ }^{a}$

Compound	$\Delta \varepsilon\left(\lambda_{\text {max }} / \mathrm{nm}\right)^{\text {a }}$	Substituent effect ($\Delta \Delta \varepsilon$)	
		Observed ${ }^{\text {b }}$	Calculated ${ }^{\text {c }}$
2a $15 \beta-\mathrm{Me}$	+2.83 (295)	-0.59	
2b $15 \beta-E t$	+3.22 (294)	-0.20	
2c $15 \beta-\mathrm{Pr}^{\text {i }}$	+4.69 (296)	+1.27	
9a $15 x-\mathrm{Me}$	+ 2.70 (295)	-0.72	
9b $15 \alpha-\mathrm{Et}$	+ 2.94 (292)	-0.48	
9c $15 \alpha-\mathrm{Pr}^{\text {i }}$	+1.70 (293)	-1.72	
10a $15,15-\mathrm{Me}_{2}$	+2.08 (295)	-1.34	-1.31
10b $15 x-E t, 15 \beta-\mathrm{Me}$	+2.18(294)	-1.24	-1.07
10c $15 \alpha-\mathrm{Pr}^{\mathrm{i}}, 15 \beta-\mathrm{Me}$	+ 1.85 (293)	-1.57	-2.31
10d $15 \alpha-\mathrm{Me}, 15 \beta$-Et	+2.30 (294)	-1.12	-0.92
10e $15,15-\mathrm{Et}_{2}$	+2.99 (293)	-0.43	-0.68

a Measured for solutions in methanol; operational details are given in the Experimental section. ${ }^{b}$ Derived by taking the difference from $\Delta \varepsilon$ $+3.42(296 \mathrm{~nm})$ for 3 -methoxyestra-1,3,5(10)-trien-17-one. ${ }^{c}$ Derived by adding observed $\Delta \Delta \varepsilon$-values for discrete monoalkyl parents.
mixture was treated with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}\left(5 \mathrm{~cm}^{3}\right)$ and 1 $\mathrm{mol} \mathrm{dm}{ }^{-3}$ hydrochloric acid ($3 \mathrm{~cm}^{3}$). The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 15 min . The residue (72 mg) obtained upon work-up (EtOAc) was chromatographed on silica gel (6 g), eluted with ethyl acetate-toluene ($1: 4$), to give the 15β-methyl 17 -ketone 2a ($82 \mathrm{mg}, 92 \%$).
(c) Copper(I) iodide ($119 \mathrm{mg}, 0.62 \mathrm{mmol}$) was added to a solution of ethylmagnesium iodide (6.25 mmol) [prepared from reaction of iodoethane $\left(0.5 \mathrm{~cm}^{3}\right)$ with magnesium (150 mg)] in dry diethyl ether $\left(1.5 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. A solution of the Δ^{15}-17ketone $1(340 \mathrm{mg}, 1.20 \mathrm{mmol})$ in dry THF $\left(10 \mathrm{~cm}^{3}\right)$ was added slowly at $20^{\circ} \mathrm{C}$ to the stirred solution. After 10 min at $20^{\circ} \mathrm{C}$ the mixture was cooled to $0^{\circ} \mathrm{C}$, and saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(10$ cm^{3}) was added. Work-up (EtOAc) followed by crystallisation of the residue (341 mg) from $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ gave 15β-ethyl-3-methoxyestra-1,3,5(10)-trien-17-one 2b ($326 \mathrm{mg}, 87 \%$), mp 125$129^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}+85\left(c 0.95, \mathrm{CHCl}_{3}\right)$ (Found: C, 80.6; H, 8.9; M^{+}, 312. $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{2}$ requires $\mathrm{C}, 80.7 ; \mathrm{H}, 9.0 \%$; M, 312); $\Delta \varepsilon_{\text {max }}+3.22$ $(294 \mathrm{~nm}) ; v_{\text {max }} / \mathrm{cm}^{-1} 1727(\mathrm{CO}) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 0.95(3 \mathrm{H}, \mathrm{t}, J$ $2 \times 7.5,15 \beta-\mathrm{CH}_{2}$ Me $), 1.02(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{Me}), 1.34$ and 1.65 (each $\left.1 \mathrm{H}, \mathrm{m}, 15 \beta-\mathrm{CH}_{2} \mathrm{Me}\right), 1.73(1 \mathrm{H}, \mathrm{m}, 14 \alpha-\mathrm{H}), 1.90(1 \mathrm{H}, \mathrm{dt}$, $J 11.7$ and $2 \times 2.4,12 \beta-\mathrm{H}), 2.06(1 \mathrm{H}$, ddt, $J 12.6,5.5$ and $2 \times 2.9,7 \beta-\mathrm{H}), 2.16-2.25(1 \mathrm{H}, \mathrm{m}, 15 \alpha-\mathrm{H}), 2.29(1 \mathrm{H}, \mathrm{td}, J$ 2×10.6 and $3.7,9 \alpha-\mathrm{H}), 2.37(1 \mathrm{H}, \mathrm{dd}, J 19.4$ and $2.5,16 \beta-\mathrm{H})$, 2.43 ($1 \mathrm{H}, \mathrm{dd}, J 19.4$ and $7.8,16 \alpha-\mathrm{H}$), 2.92 ($2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}$), 3.79 (3 $\mathrm{H}, \mathrm{s}, 3-\mathrm{OMe}), 6.66(1 \mathrm{H}, \mathrm{d}, J 2.9,4-\mathrm{H}), 6.72(1 \mathrm{H}, \mathrm{dd}, J 8.4$ and $2.9,2-\mathrm{H})$ and $7.20(1 \mathrm{H}, \mathrm{d}, J 8.4,1-\mathrm{H})$.
(d) Copper(I) iodide-dimethyl sulfide ($215 \mathrm{mg}, 0.85 \mathrm{mmol}$) and hexamethylphosphoric triamide (HMPA) $\left(2.0 \mathrm{~cm}^{3}, 11.5\right.$ mmol) were added to a solution of isopropylmagnesium bromide (8.50 mmol) [prepared at $0^{\circ} \mathrm{C}$ from magnesium (204 mg) and 2-bromopropane $\left.\left(0.8 \mathrm{~cm}^{3}\right)\right]$ in dry diethyl ether (10 cm^{3}) at $0^{\circ} \mathrm{C}$. After 5 min at $0^{\circ} \mathrm{C}$ the stirred mixture was slowly treated with a solution of the $\Delta^{15}-17$-ketone $\mathbf{1}(500 \mathrm{mg}, 1.77$ mmol) and chlorotrimethylsilane ($1.6 \mathrm{~cm}^{3}, 12.6 \mathrm{mmol}$) in dry THF ($10 \mathrm{~cm}^{3}$). After 20 min at $0^{\circ} \mathrm{C}$ the mixture was treated with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}\left(20 \mathrm{~cm}^{3}\right)$ and aq. ammonia $\left(10 \mathrm{~cm}^{3}\right)$. Work-up (EtOAc) and chromatography of the residue (581 mg) on silica gel (50 g) with EtOAc-toluene ($1: 49$) as eluent, gave 15β-isopropyl-3-methoxyestra-1,3,5(10)-trien-17-one 2c (508 $\mathrm{mg}, 88 \%$), mp $104-108{ }^{\circ} \mathrm{C}$ (from $\mathrm{Pr}^{\mathrm{i}}{ }_{2} \mathrm{O}$); $[\alpha]_{\mathrm{D}}+106$ (c 1.0 , CHCl_{3}) (Found: C, 80.5; H, 9.3; M ${ }^{+}$, 326. $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{2}$ requires C, $80.9 ; \mathrm{H}, 9.3 \% ; \mathrm{M}, 326) ; \Delta \varepsilon_{\text {max }}+4.69(296 \mathrm{~nm}) ; v_{\text {max }} / \mathrm{cm}^{-1}$ $1724(\mathrm{CO}) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 0.96$ and 1.10 (each $3 \mathrm{H}, \mathrm{d}, J 6.4,15 \beta-$ $\mathrm{CH} \mathrm{Me}_{2}$), $1.08(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{Me}), 1.43(1 \mathrm{H}, \mathrm{qd}, J 3 \times 13.1$ and $3.8,7 \alpha-\mathrm{H}$), $1.77(1 \mathrm{H}, \mathrm{dd}, J 11.8$ and $6.0,14 \alpha-\mathrm{H}), 1.92(1 \mathrm{H}, \mathrm{dt}, J$ 9.6 and $2 \times 3.1,12 \beta-\mathrm{H}), 2.22(1 \mathrm{H}, \mathrm{td}, J 2 \times 10.6$ and $4.4,9 \alpha-$ H), $2.30(1 \mathrm{H}, \mathrm{ddt}, J 13.1,5.7$ and $2 \times 2.9,7 \beta-\mathrm{H}), \sim 2.38 \mathrm{obsc}(1$ H , dd, $J, 19.2$ and $3.1,16 \beta-\mathrm{H}$), $2.44(1 \mathrm{H}, \mathrm{dd}, J 19.2$ and 7.0 ,
$16 \alpha-\mathrm{H}), 2.89\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 3.79(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OMe}), 6.66(1 \mathrm{H}, \mathrm{d}$, $J 2.8,4-\mathrm{H}), 6.73(1 \mathrm{H}, \mathrm{dd}, J 8.4$ and $2.8,2-\mathrm{H})$ and $7.20(1 \mathrm{H}, \mathrm{d}, J$ $8.4,1-\mathrm{H})$.

15-Alkyl-3-methoxyestra-1,3,5(10),15-tetraen-17-ones 5

(a) A solution of LDA (5.28 mmol) in THF $\left(4 \mathrm{~cm}^{3}\right)$ [prepared at $0^{\circ} \mathrm{C}$ from diisopropylamine $\left(1.5 \mathrm{~cm}^{3}, 10.58 \mathrm{mmol}\right)$ in dry THF $\left(4 \mathrm{~cm}^{3}\right)$ and $1.6 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ butyllithium ($3.3 \mathrm{~cm}^{3}, 5.28 \mathrm{mmol}$)] was cooled to $-78^{\circ} \mathrm{C}$ and a solution of the 15β-methyl $17-$ ketone 2a ($315 \mathrm{mg}, 1.05 \mathrm{mmol}$) in dry THF $\left(5 \mathrm{~cm}^{3}\right)$ was added slowly. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min , then chlorotrimethylsilane ($1.4 \mathrm{~cm}^{3}, 11.0 \mathrm{mmol}$) was added and the mixture was allowed to warm to $20^{\circ} \mathrm{C}$. After 15 min at $20^{\circ} \mathrm{C}$ the mixture was cooled to $0^{\circ} \mathrm{C}$ and saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(10$ cm^{3}) was added. Work-up (EtOAc) gave the crude silyl enol ether $\mathbf{4 a}(385 \mathrm{mg})$, which was dissolved in acetonitrile ($10 \mathrm{~cm}^{3}$). Palladium(II) acetate ($233 \mathrm{mg}, 1.04 \mathrm{mmol}$) was added, and the mixture was refluxed for 15 min , then cooled to $20^{\circ} \mathrm{C}$, filtered, and concentrated under reduced pressure to give a dark crystalline product (484 mg). Chromatography on silica gel (24 g) with EtOAc-toluene (1:19) as eluent gave 3-methoxy-15-methylestra-1,3,5(10), 15-tetraen-17-one 5a ($267 \mathrm{mg}, 86 \%$ from 2a), mp $156-158{ }^{\circ} \mathrm{C}$ (from EtOAc-MeOH); $[\alpha]_{\mathrm{D}}-17$ (c 1.0 , CHCl_{3}) (Found: C, 81.3; H, 8.15; M ${ }^{+}$, 296. $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{2}$ requires $\mathrm{C}, 81.0 ; \mathrm{H}, 8.2 \% ; \mathrm{M}, 296) ; v_{\text {max }} / \mathrm{cm}^{-1} 1688(\mathrm{CO}) ; \delta_{\mathrm{H}}(200 \mathrm{MHz})$ $1.11(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{Me}), 2.25(3 \mathrm{H}, \mathrm{s}, 15-\mathrm{Me}), 2.94\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right)$, 3.79 ($3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OMe}$), $5.77(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{16-H)} ,6.66(1 \mathrm{H}, \mathrm{d}, J 2.5$, $4-\mathrm{H}), 6.75(1 \mathrm{H}, \mathrm{dd}, J 8.6$ and $2.5,2-\mathrm{H})$ and $7.23(1 \mathrm{H}, \mathrm{d}, J 8.6$, 1-H).
(b) A solution of lithium dimethylcuprate($(\mathrm{I})(5.41 \mathrm{mmol})$ in dry diethyl ether $\left(5 \mathrm{~cm}^{3}\right)$ was prepared as described previously. The reagent was cooled to $-78^{\circ} \mathrm{C}$, and triethylamine $(0.75$ $\left.\mathrm{cm}^{3}, 5.40 \mathrm{mmol}\right)$ and chlorotrimethylsilane $\left(0.7 \mathrm{~cm}^{3}, 5.50\right.$ $\mathrm{mmol})$ were added, followed by the $\Delta^{15}-17$-ketone $1(1.0 \mathrm{~g}, 3.55$ $\mathrm{mmol})$ in dry THF $\left(10 \mathrm{~cm}^{3}\right)$. After the mixture had been kept for 15 min at $-78^{\circ} \mathrm{C}$, saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}\left(20 \mathrm{~cm}^{3}\right)$ was added. Work-up (EtOAc) gave crude silyl enol ether $\mathbf{4 a}$ as an oil (1.51 g), which was treated with palladium(11) acetate ($770 \mathrm{mg}, 3.43$ mmol) in acetonitrile ($30 \mathrm{~cm}^{3}$) as described in the foregoing experiment, to yield the 15 -methyl Δ^{15}-17-ketone $5 \mathrm{a}(861 \mathrm{mg}$, 82% from 1).
(c) Successive silyl enol ether formation and dehydrosilylation of the 15β-ethyl 17 -ketone $\mathbf{2 b}$ ($495 \mathrm{mg}, 1.58 \mathrm{mmol}$), as described for compound 2a [exp. (a), above], gave 15-ethyl-3-methoxy-estra-1,3,5(10), 15-tetraen-17-one 5b ($419 \mathrm{mg}, 85 \%$ from 2b), mp $103-106{ }^{\circ} \mathrm{C}$ (from $\left.\mathrm{CHCl}_{3}-\mathrm{MeOH}\right) ;[\alpha]_{\mathrm{D}}-14\left(c 0.9, \mathrm{CHCl}_{3}\right)$ (Found: C, 81.1; H, 8.5; $\mathrm{M}^{+}, 310 . \mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{2}$ requires C , $81.25 ; \mathrm{H}, 8.4 \% ; \mathrm{M}, 310) ; v_{\text {max }} / \mathrm{cm}^{-1}(\mathrm{CO}) 1689 ; \delta_{\mathrm{H}}(400 \mathrm{MHz})$ $1.11(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{Me}), 1.20\left(3 \mathrm{H}, \mathrm{t}, J 2 \times 7.6,15-\mathrm{CH}_{2} \mathrm{Me}\right), 2.40$ ($2 \mathrm{H}, \mathrm{m}, 15-\mathrm{CH}_{2} \mathrm{Me}$), $2.94\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right.$), 3.78 ($3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OMe}$), $5.79(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 16-\mathrm{H}), 6.64(1 \mathrm{H}, \mathrm{d}, J 2.8,4-\mathrm{H}), 6.73(1 \mathrm{H}, \mathrm{dd}$, $J 8.3$ and $2.8,2-\mathrm{H})$ and $7.22(1 \mathrm{H}, \mathrm{d}, J 8.3,1-\mathrm{H})$.
(d) Similar treatment of the 15β-isopropyl 17-ketone 2c (521 $\mathrm{mg}, 1.60 \mathrm{mmol}$) gave 15-isopropyl-3-methoxyestra-1,3,5(10),15-tetraen-17-one $5 \mathrm{c}\left(441 \mathrm{mg}, 85 \%\right.$ from 2c), mp 113-116 ${ }^{\circ} \mathrm{C}$ (from $\left.\mathrm{CHCl}_{3}-\mathrm{MeOH}\right) ;[\alpha]_{\mathrm{D}}-18\left(c 1.0, \mathrm{CHCl}_{3}\right)$ (Found: C, $81.6 ; \mathrm{H}$, $8.9 ; \mathrm{M}^{+}, 324 . \mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{2}$ requires $\mathrm{C}, 81.4 ; \mathrm{H}, 8.7 \% ; \mathrm{M}, 324$); $v_{\max } / \mathrm{cm}^{-1} 1690(\mathrm{CO}) ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 1.10(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{Me}), 1.16$ and 1.22 (each $\left.3 \mathrm{H}, \mathrm{d}, J 2 \times 6.6,15-\mathrm{CH} M e_{2}\right), 2.57(1 \mathrm{H}, \mathrm{dd}, J$ 11.2 and $2.7,14 \alpha-\mathrm{H}), 2.92\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 3.79(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OMe})$, $5.80(1 \mathrm{H}, \mathrm{dd}, J 2.7$ and $1.2,16-\mathrm{H}), 6.65(1 \mathrm{H}, \mathrm{d}, J 2.7,4-\mathrm{H}), 6.74$ ($1 \mathrm{H}, \mathrm{dd}, J 8.6$ and $2.7,2-\mathrm{H}$) and 7.24 ($1 \mathrm{H}, \mathrm{d}, J 8.6,1-\mathrm{H}$).
(e) A mixture of the 15β-methyl 17 -ketone $\mathbf{2 a}$ ($190 \mathrm{mg} ; 0.64$ mmol) and copper(II) bromide (360 mg ; 1.61 mmol) in methanol-benzene ($1: 1 ; 20 \mathrm{~cm}^{3}$) was refluxed for 50 min . The warm reaction mixture was filtered (Celite) and the filtrate was concentrated under reduced pressure. Water ($20 \mathrm{~cm}^{3}$) was added and the standard work-up $\left(\mathrm{CHCl}_{3}\right)$ gave a yellow-brown crystalline product (222 mg), which was chromatographed on silica gel (10 g) with toluene as eluent, to yield 16x-bromo-

3-methoxy-15ß-methylestra-1,3,5(10)-trien-17-one 6 (198 mg, 82%), mp $162-165^{\circ} \mathrm{C}\left(\right.$ from $\left.\mathrm{CHCl}_{3}-\mathrm{MeOH}\right) ;[\alpha]_{\mathrm{D}}+71(c 1.0$, CHCl_{3}) [Found: $\mathrm{C}, 63.3 ; \mathrm{H}, 6.6 ; \mathrm{M}^{+}, 376 / 378$ (1:1). $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{BrO}_{2}$ requires $\left.\mathrm{C}, 63.65 ; \mathrm{H}, 6.7 \% ; \mathrm{M}, 377\right] ; v_{\text {max }} / \mathrm{cm}^{-1}$ $1755(\mathrm{CO}) ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 1.11(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{Me}), 1.28(3 \mathrm{H}, \mathrm{d}, J$ $7.7,15 \beta-\mathrm{Me}), 2.75(1 \mathrm{H}$, quint d, $J 4 \times 7.7$ and $1.8,15 \alpha-\mathrm{H}), 2.95$ ($2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}$), $3.79(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OMe}), 4.37(1 \mathrm{H}, \mathrm{d}, J 1.8,16 \beta-\mathrm{H})$, $6.67(1 \mathrm{H}, \mathrm{d}, J 2.7,4-\mathrm{H}), 6.73(1 \mathrm{H}, \mathrm{dd}, J 8.5$ and $2.7,2-\mathrm{H})$ and $7.20(1 \mathrm{H}, \mathrm{d}, J 8.5,1-\mathrm{H}) ; \delta_{\mathrm{C}}(50 \mathrm{MHz}) 16.0(15 \beta-\mathrm{Me}), 18.1(\mathrm{C}-18)$, 25.4 (C-11), 26.7 (C-7), 29.3 (C-6), 34.85 (C-12), 35.4 (C-8), 41.1 (C-15), 44.25 (C-9), 47.9 (C-13), 49.1 (C-16), 54.0 (C-14), 55.3 (3-OMe), 111.5 (C-2), 113.9 (C-4), 125.9 (C-1), 132.1 (C-10), 137.6 (C-5), 157.7 (C-3) and 221.3 (C-17).

A deoxygenated solution of the bromo ketone $\mathbf{6}(490 \mathrm{mg}, 1.30$ mmol), lithium bromide ($800 \mathrm{mg}, 9.22 \mathrm{mmol}$), and lithium carbonate ($690 \mathrm{mg}, 9.35 \mathrm{mmol}$) in dry DMF ($15 \mathrm{~cm}^{3}$) was refluxed for 22 h . The warm solution was poured into aq. 50% acetic acid ($14 \mathrm{~cm}^{3}$). Work-up (EtOAc) gave a residue (370 mg), which was chromatographed on silica gel (35 g) with EtOAc toluene (1:9) as eluent, to give the 15β-methyl 17-ketone $\mathbf{2 a}$ ($90 \mathrm{mg}, 23 \%$); the 15 -methyl $\Delta^{15}-17$-ketone 5a ($50 \mathrm{mg}, 13 \%$), $v_{\text {max }} / \mathrm{cm}^{-1} 1688(\mathrm{CO})$; and material ($160 \mathrm{mg}, 41 \%$), $v_{\text {max }} / \mathrm{cm}^{-1}$ $1741(\mathrm{CO})$, assumed to contain the 15 -methyl Δ^{14}-17-ketone.
(f) The Δ^{15}-17-ketone $1(114 \mathrm{mg}, 0.51 \mathrm{mmol})$ was converted into the crude silyl enol ether $\mathbf{4 a}(150 \mathrm{mg})$, which was dissolved in dry THF ($2 \mathrm{~cm}^{3}$). Boron trifluoride-diethyl ether complex $\left(0.1 \mathrm{~cm}^{3}, 0.79 \mathrm{mmol}\right)$ was added to the solution at $-78^{\circ} \mathrm{C}$, followed by a solution of benzeneselenenyl chloride (191 mg , 1.0 mmol) in dry THF ($1 \mathrm{~cm}^{3}$), and the stirred solution was allowed to warm to $0^{\circ} \mathrm{C}$. The mixture was poured into icewater and worked up $\left(\mathrm{CHCl}_{3}\right)$. The residue (181 mg) was chromatographed on silica gel (18 g), with EtOAc-toluene ($1: 9$) as eluent, to give the 15β-methyl 16α-phenylselanyl 17 -ketone 7 as a labile, clear oil $(145 \mathrm{mg}, 80 \%), \delta_{\mathrm{H}}(200 \mathrm{MHz}) 1.06(3 \mathrm{H}, 13 \beta-$ Me) $1.14(3 \mathrm{H}, \mathrm{d}, J 7.7,15 \beta-\mathrm{Me}), 2.58(1 \mathrm{H}, \mathrm{td}, J 2 \times 7.4$ and $2.1,9 \alpha-\mathrm{H}), 2.85\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 3.77(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OMe}), 3.84(1 \mathrm{H}$, $\mathrm{d}, J 1.9,16 \beta-\mathrm{H}), 6.63(1 \mathrm{H}, \mathrm{d}, J 2.6,4-\mathrm{H}), 6.7(1 \mathrm{H}, \mathrm{dd}, J 8.7$ and $2.6,2-\mathrm{H}), 7.15(1 \mathrm{H}, \mathrm{d}, J 8.7,1-\mathrm{H})$ and $7.31-7.63(5 \mathrm{H}, \mathrm{m}, \mathrm{SePh})$; $m / z 453\left(\mathrm{M}^{+}\right)$, followed by the 15β-methyl 17-ketone $\mathbf{2 a}(12 \mathrm{mg}$, 10%).

The selenide $7(145 \mathrm{mg}, 0.32 \mathrm{mmol})$ as a solution in dichloromethane ($3 \mathrm{~cm}^{3}$) and pyridine ($1 \mathrm{~cm}^{3}$) was cooled to $0^{\circ} \mathrm{C}$, and 30% hydrogen peroxide $\left(0.5 \mathrm{~cm}^{3}\right.$) was added slowly. The solution was stirred for 1.5 h , with slow warming to $20^{\circ} \mathrm{C}$. Saturated aq. $\mathrm{NaHCO}_{3}\left(20 \mathrm{~cm}^{3}\right)$ was added, and the mixture was worked up $\left(\mathrm{CHCl}_{3}\right)$. Chromatography of the residue (87 mg) on silica gel (8 g), with EtOAc-toluene ($1: 9$) as eluent, gave the 15 -methyl $\Delta^{15} 17$-ketone 5 a ($38 \mathrm{mg}, 40 \%$), followed by 3-methoxy-15-methyl-17a-oxa-17a-homoestra-1,3,5(10),15-tetraen-17-one 8 ($45 \mathrm{mg}, 45 \%$), mp 185-187 ${ }^{\circ} \mathrm{C}$ (from EtOAc$\mathrm{MeOH}) ;[\alpha]_{\mathrm{D}}-14\left(c\right.$ 1.0, $\left.\mathrm{CHCl}_{3}\right)$ (Found: C, $76.7 ; \mathrm{H}, 7.5 ; \mathrm{M}^{+}$, 312. $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{3}$ requires $\mathrm{C}, 76.9 ; \mathrm{H}, 7.7 \% ; \mathrm{M}, 312$); $v_{\text {max }} / \mathrm{cm}^{-1}$ $1705(\mathrm{CO}) ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 1.31(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{Me}), 2.10(3 \mathrm{H}, \mathrm{t}, J$ $2 \times 1.5,15-\mathrm{Me}), 2.87\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 3.79(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OMe}), 5.88$ $(1 \mathrm{H}, \mathrm{q}, J 3 \times 1.5,16-\mathrm{H}), 6.68(1 \mathrm{H}, \mathrm{d}, J 2.7,4-\mathrm{H}), 6.75(1 \mathrm{H}, \mathrm{dd}$, $J 8.4$ and $2.7,2-\mathrm{H})$ and $7.17(1 \mathrm{H}, \mathrm{d}, J 8.4,1-\mathrm{H}) ; \delta_{\mathrm{C}}(50 \mathrm{MHz})$ 18.8 (C-18), 23.0 (15-Me), 25.4 (C-11), 28.3 (C-7), 29.2 (C-6), 30.3 (C-12), 38.5 (C-8), 42.9 (C-9), 50.3 (C-14), 55.2 (3-OMe), 83.4 (C-13), 111.4 (C-2), 113.4 (C-4), 119.4 (C-16), 125.2 (C-1), $132.2(\mathrm{C}-10), 137.9(\mathrm{C}-5), 158.0(\mathrm{C}-3), 158.8(\mathrm{C}-17)$ and 164.1 (C-15).

15a-Alkyl-3-methoxyestra-1,3,5(10)-trien-17-ones 9

(a) Freshly cut lithium (11 mg) was dissolved in liquid ammonia (distilled from sodium; $20 \mathrm{~cm}^{3}$) and the 15 -methyl Δ^{15}-17ketone $5 \mathbf{5 a}(50 \mathrm{mg}, 0.17 \mathrm{mmol})$ as a solution in dry THF ($7 \mathrm{~cm}^{3}$) was added slowly to the stirred mixture. After 15 min the mixture was treated with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}\left(\sim 10 \mathrm{~cm}^{3}\right)$. The ammonia was allowed to evaporate off, and the residue was diluted with water. Standard work-up (EtOAc) gave crude
material (40 mg), chromatography of which on silica gel (4 g), with EtOAc-toluene (1:9) as eluent, gave 3-methoxy-15 α -methylestra-1,3,5(10)-trien-17-one 9a (35 mg, 70%), mp 137$140{ }^{\circ} \mathrm{C}$ (from $\left.\mathrm{CHCl}_{3}-\mathrm{MeOH}\right) ;[x]_{\mathrm{D}}+192\left(c 1.0, \mathrm{CHCl}_{3}\right)$ (lit., ${ }^{3}$ 135-138 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}+198$) (Found: C, 80.3; H, 8.7; $\mathrm{M}^{+}, 298$. Calc. for $\left.\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{2}: \mathrm{C}, 80.5 ; \mathrm{H}, 8.8 \% ; \mathrm{M}, 298\right) ; \Delta \varepsilon_{\max }+2.70(295$ $\mathrm{nm}), v_{\text {max }} / \mathrm{cm}^{-1} 1724(\mathrm{CO}) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 0.95(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{Me})$, $1.22(1 \mathrm{H}, \mathrm{t}, J 2 \times 10.8,14 \alpha-\mathrm{H}), 1.23(3 \mathrm{H}, \mathrm{d}, J 6.4,15 x-\mathrm{Me})$, $1.73(3 \mathrm{H}, \mathrm{dd}, J 19.3$ and $8.4,16 \alpha-\mathrm{H}), 1.76(1 \mathrm{H}, \mathrm{qd}, J 3 \times 10.8$ and $2.4,8 \beta-\mathrm{H}), 1.89(1 \mathrm{H}, \mathrm{dt}, J 9.6$ and $2 \times 2.7,12 \beta-\mathrm{H}), 2.22(1$ $\mathrm{H}, \mathrm{dq}, J 12.9$ and $3 \times 2.9,11 \alpha-\mathrm{H}), 2.38(1 \mathrm{H}$, ddt, $J 11.6,4.9$ and $2 \times 2.4,7 \beta-\mathrm{H}), 2.77(3 \mathrm{H}$, dd, $J 19.3$ and $8.7,16 \beta-\mathrm{H}), 2.87(2 \mathrm{H}$, $\left.\mathrm{m}, 6-\mathrm{H}_{2}\right), 3.76(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OMe}), 6.61(1 \mathrm{H}, \mathrm{d}, J 2.7,4-\mathrm{H}), 6.70(1$ H , dd, $J 8.7$ and $2.7,2-\mathrm{H})$ and 7.19 ($1 \mathrm{H}, \mathrm{d}, J 8.7,1-\mathrm{H})$.
(b) Similar treatment of the 15 -ethyl Δ^{15}-17-ketone $\mathbf{5 b}$ (50 $\mathrm{mg}, 0.16 \mathrm{mmol}$) gave 15α-ethyl-3-methoxyestra-1,3,5(10)-trien-17-one 9b ($40 \mathrm{mg}, 80 \%$), mp 91-95 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}-\mathrm{MeOH}$); $[\alpha]_{\mathrm{D}}+170\left(c 1.1, \mathrm{CHCl}_{3}\right)$ (Found: C, 80.4; H, 8.9; $\mathrm{M}^{+}, 312$. $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{2}$ requires $\left.\mathrm{C}, 80.7 ; \mathrm{H}, 9.0 \%, \mathrm{M}, 312\right) ; \Delta \varepsilon_{\text {max }}+2.94(292$ $\mathrm{nm}) ; v_{\text {max }} / \mathrm{cm}^{-1} 1727(\mathrm{CO}) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 0.94(3 \mathrm{H}, \mathrm{t}, J 2 \times 7.4$, $\left.15 \alpha-\mathrm{CH}_{2} M e\right), 0.97(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{Me}), 1.22$ and 2.02 (each $1 \mathrm{H}, \mathrm{m}$, $\left.15 \alpha-\mathrm{CH}_{2} \mathrm{Me}\right), 1.29(1 \mathrm{H}, \mathrm{t}, J 2 \times 10.7,14 \alpha-\mathrm{H}), 1.78(1 \mathrm{H}, \mathrm{qd}, J$ 3×10.7 and $2.9,8 \beta-\mathrm{H}), 1.79(1 \mathrm{H}$, dd, $J 19.4$ and $7.9,16 \alpha-\mathrm{H})$, $1.90(1 \mathrm{H}, \mathrm{dt}, J 10.9$ and $2 \times 2.0,12 \beta-\mathrm{H}), 2.23(1 \mathrm{H}, \mathrm{ddt}, J 12.7$, 5.7 and $2 \times 2.9,7 \beta-\mathrm{H}), 2.30(1 \mathrm{H}, \mathrm{td}, J 2 \times 10.7$ and $4.8,9 \alpha-\mathrm{H})$, $2.78(1 \mathrm{H}, \mathrm{dd}, J 19.4$ and $8.8,16 \beta-\mathrm{H}), 2.87\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 3.78$ $(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OMe}), 6.62(1 \mathrm{H}, \mathrm{d}, J 2.8,4-\mathrm{H}), 6.72(1 \mathrm{H}, \mathrm{dd}, J 8.7$ and $2.8,2-\mathrm{H})$ and $7.21(1 \mathrm{H}, \mathrm{d}, J 8.7,1-\mathrm{H})$.
(c) Similar treatment of the 15 -isopropyl Δ^{15}-ketone 5 c (50 $\mathrm{mg}, 0.15 \mathrm{mmol}$) gave $15 x$-isopropyl-3-methoxyestra-1,3,5(10)-trien-17-one 9c ($35 \mathrm{mg}, 72 \%$), mp $128-131^{\circ} \mathrm{C}$ (from CHCl_{3} $\mathrm{MeOH}) ;[\alpha]_{\mathrm{D}}+173\left(c 0.45, \mathrm{CHCl}_{3}\right)$ (Found: C, $80.4 ; \mathrm{H}, 9.2$; $\mathrm{M}^{+}, 326 . \mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{2}$ requires $\mathrm{C}, 80.9 ; \mathrm{H}, 9.3 \% ; \mathrm{M}, 326$); $\Delta \varepsilon_{\text {max }}$ $+1.70(293 \mathrm{~nm}) ; v_{\text {max }} / \mathrm{cm}^{-1} 1727(\mathrm{CO}) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 0.83$ and 0.92 (each $3 \mathrm{H}, \mathrm{d}, J 6.7,15 \alpha-\mathrm{CHMe} 2$), 0.97 ($3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{Me}$), $1.45(1 \mathrm{H}, \mathrm{t}, J 2 \times 10.8,14 \alpha-\mathrm{H}), 1.76(1 \mathrm{H}, \mathrm{qd}, J 3 \times 10.8$ and $2.6,8 \beta-\mathrm{H}), 1.90(1 \mathrm{H}, \mathrm{dt}, J 10.5$ and $2 \times 2.4,12 \beta-\mathrm{H}), 1.95(1 \mathrm{H}$, dd, $J 18.5$ and $7.7,16 \alpha-\mathrm{H}), 2.42(1 \mathrm{H}$, dd, $J 18.5$ and $8.5,16 \beta-\mathrm{H})$, $2.85\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 3.77(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OMe}), 6.61(1 \mathrm{H}, \mathrm{d}, J 2.8,4-$ $\mathrm{H}), 6.71(1 \mathrm{H}$, dd, $J 8.5$ and $2.8,2-\mathrm{H})$ and $7.20(1 \mathrm{H}, \mathrm{d}, J 8.5,1-$ H).

15,15-Dialkyl-3-methoxyestra-1,3,5(10)-trien-17-ones 10
(a) To a solution of lithium dimethylcuprate(I) $(0.79 \mathrm{mmol})$ in dry diethyl ether ($2 \mathrm{~cm}^{3}$) [prepared at $0^{\circ} \mathrm{C}$ from copper(I) iodide ($150 \mathrm{mg}, 0.79 \mathrm{mmol}$) and ethereal $1.6 \mathrm{~mol} \mathrm{dm}^{-3}$ methyllithium ($1.0 \mathrm{~cm}^{3}, 1.6 \mathrm{mmol}$)] at $-78^{\circ} \mathrm{C}$ was added boron trifluoride-diethyl ether complex ($0.1 \mathrm{~cm}^{3}, 0.80 \mathrm{mmol}$), followed by a solution of the 15 -methyl Δ^{15}-17-ketone 5 (163 $\mathrm{mg}, 0.55 \mathrm{mmol})$ in dry THF $\left(2 \mathrm{~cm}^{3}\right)$. After the mixture had been kept for 30 min at $0^{\circ} \mathrm{C}$, saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}\left(10 \mathrm{~cm}^{3}\right)$ was added. Standard work-up (EtOAc) gave a crystalline residue $(132 \mathrm{mg})$, chromatography of which on silica gel $(5 \mathrm{~g})$, with EtOAc-toluene $(1: 19)$ as eluent, gave the 3-methoxy-15,15-dimethylestra-1,3,5(10)-trien-17-one 10a ($120 \mathrm{mg}, 70 \%$), mp $145-148^{\circ} \mathrm{C}$ (from EtOAc-MeOH); $[\alpha]_{\mathrm{D}}+75\left(c 1.0, \mathrm{CHCl}_{3}\right)$ (Found: $\mathrm{C}, 80.5 ; \mathrm{H}, 8.8 ; \mathrm{M}^{+}, 312 . \mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{2}$ requires $\mathrm{C}, 80.7$; $\mathrm{H}, 9.0 \% ; \mathrm{M}, 312) ; \Delta \varepsilon_{\max }+2.08(295 \mathrm{~nm}) ; v_{\text {max }} / \mathrm{cm}^{1} 1727(\mathrm{CO})$; $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.10(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{Me}), 1.28$ and 1.29 (each $3 \mathrm{H}, \mathrm{s}$, $15 \alpha-$ and $15 \beta-\mathrm{Me}), 1.47(1 \mathrm{H}, \mathrm{d}, J 10.9,14 \alpha-\mathrm{H}), 2.09(1 \mathrm{H}, \mathrm{d}, J$ $19.4,16 \alpha-\mathrm{H}), 2.23(1 \mathrm{H}$, ddt, $J 12.7,5.3$ and $2 \times 2.6,7 \beta-\mathrm{H}), 2.61$ ($1 \mathrm{H}, \mathrm{d}, J 19.4,16 \beta-\mathrm{H}), 2.93\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 3.78(3 \mathrm{H}, \mathrm{s}, 3-$ OMe $), 6.63(1 \mathrm{H}, \mathrm{d}, J 2.7,4-\mathrm{H}), 6.70(1 \mathrm{H}, \mathrm{dd}, J 8.6$ and $2.7,2-\mathrm{H})$ and $7.21(1 \mathrm{H}, \mathrm{d}, J 8.6,1-\mathrm{H})$.
(b) Similar treatment of the 15 -ethyl Δ^{15}-17-ketone $\mathbf{5 b}$ (150 $\mathrm{mg}, 0.48 \mathrm{mmol}$) gave $15 x$-ethyl-3-methoxy-15 β-methylestra-1,3,5(10)-trien-17-one $10 \mathrm{~b}\left(127 \mathrm{mg}, 81 \%\right.$), mp $110-113^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}-\mathrm{MeOH}$) $;[\alpha]_{\mathrm{D}}+90\left(c 1.0, \mathrm{CHCl}_{3}\right)$ (Found: $\mathrm{C}, 81.2 ; \mathrm{H}$, $9.5 ; \mathrm{M}^{+}, 326 . \mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{2}$ requires $\mathrm{C}, 80.9 ; \mathrm{H}, 9.3 \% ; \mathrm{M}, 326$); $\Delta \varepsilon_{\text {max }}+2.18(294 \mathrm{~nm}) ; v_{\text {max }} / \mathrm{cm}^{-1} 1724(\mathrm{CO}) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 0.89$
($\left.3 \mathrm{H}, \mathrm{t}, \mathrm{J} 2 \times 7.4,15 \alpha-\mathrm{CH}_{2} \mathrm{Me}\right), 1.12(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{Me}), 1.25(3$ $\mathrm{H}, \mathrm{s}, 15 \beta-\mathrm{Me}$), 1.36 and I .76 (each $1 \mathrm{H}, \mathrm{dq}, J 14.8$ and 3×7.4, $\left.15 \alpha-\mathrm{CH}_{2} \mathrm{Me}\right), 1.48(1 \mathrm{H}, \mathrm{d}, J 11.0,14 \alpha-\mathrm{H}), 2.18$ ($1 \mathrm{H}, \mathrm{d}, J 19.4$, $16 \alpha-\mathrm{H}), 2.26(1 \mathrm{H}, \mathrm{ddt}, J 12.8,5.4$ and $2 \times 2.6,7 \beta-\mathrm{H}), 2.44(1 \mathrm{H}$, d, $J 19.4,16 \beta-\mathrm{H}) 2.88\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 3.77(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OMe}), 6.62$ $(1 \mathrm{H}, \mathrm{d}, J 2.9,4-\mathrm{H}), 6.71(1 \mathrm{H}, \mathrm{dd}, J 8.6$ and $2.9,2-\mathrm{H})$ and 7.20 ($1 \mathrm{H}, \mathrm{d}, J 8.6,1-\mathrm{H}$).
(c) Similar treatment of the 15 -isopropyl Δ^{15}-17-ketone 5 c ($200 \mathrm{mg}, 0.62 \mathrm{mmol}$) gave 15α-isopropyl-3-methoxy-15 3 - methyl-estra-1,3,5(10)-trien-17-one 10c ($184 \mathrm{mg}, 86 \%$), mp 113-115 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{Pr}^{\mathrm{i}}{ }_{2} \mathrm{O}$); $[\alpha]_{\mathrm{D}}+87$ (c 0.9, CHCl_{3}) (Found: C, 81.2; $\mathrm{H}, 9.6 ; \mathrm{M}^{+}, 340 . \mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{2}$ requires $\mathrm{C}, 81.1 ; \mathrm{H}, 9.5 \% ; \mathrm{M}, 340$); $\Delta \varepsilon_{\text {max }}+1.85(293 \mathrm{~nm}) ; v_{\text {max }} / \mathrm{cm}^{-1} 1724(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{C}_{6} \mathrm{D}_{6} ; 400\right.$ $\mathrm{MHz}) 0.68\left(6 \mathrm{H}, \mathrm{d}, J 6.0,15 \alpha-\mathrm{CHMe} e_{2}\right), 0.87(3 \mathrm{H}, \mathrm{s}, 15 \beta-\mathrm{Me})$ $0.98(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{Me}), 1.45(1 \mathrm{H}, \mathrm{td}, J 2 \times 13.2$ and $3.6,12 \alpha-\mathrm{H})$, 1.62 obsc (1 H , sept, $J 6 \times 6.0,15 \alpha-\mathrm{CHMe}_{2}$), $1.95(1 \mathrm{H}, \mathrm{d}, J$ 19.1, $16 \alpha-\mathrm{H}), 2.08(1 \mathrm{H}, \mathrm{m}, 7 \beta-\mathrm{H}), 2.15(1 \mathrm{H}, \mathrm{d}, J 19.1,16 \beta-\mathrm{H})$, $2.68\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 3.44(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OMe}), 6.70(1 \mathrm{H}, \mathrm{d}, J 2.6,4-$ H), $6.79(1 \mathrm{H}, \mathrm{dd}, J 8.8$ and $2.6,2-\mathrm{H})$ and $7.09(1 \mathrm{H}, \mathrm{d}, J 8.8,1-$ H); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 400 \mathrm{MHz}\right) 0.87$ and 0.89 (each $3 \mathrm{H}, \mathrm{d}, J 6.7$, $15 \alpha-$ $\mathrm{CH} \mathrm{Me}_{2}$), 1.13 ($3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{Me}$), 1.32 ($3 \mathrm{H}, \mathrm{s}, 15 \beta-\mathrm{Me}$), 1.49 (1 $\mathrm{H}, \mathrm{d}, J 10.1,14 \alpha-\mathrm{H}), 1.84(1 \mathrm{H}, \mathrm{qd}, J 3 \times 10.1$ and $2.6,8 \beta-\mathrm{H})$, 1.94 obsc ($1 \mathrm{H}, \mathrm{m}, 15 \alpha-\mathrm{CHMe}$), 2.20 ($1 \mathrm{H}, \mathrm{d}, J 19.4,16 \alpha-\mathrm{H}$), $2.26(1 \mathrm{H}, \mathrm{d}, J 19.4,16 \beta-\mathrm{H}), 2.37(1 \mathrm{H}, \mathrm{m}, 7 \beta-\mathrm{H}), 2.87(2 \mathrm{H}, \mathrm{m}, 6-$ H_{2}), 3.77 ($3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OMe}$), $6.68(1 \mathrm{H}, \mathrm{d}, J 2.8,4-\mathrm{H}), 6.75(1 \mathrm{H}$, dd, $J 8.8$ and $2.8,2-\mathrm{H}$) and 7.20 ($1 \mathrm{H}, \mathrm{d}, J 8.8,1-\mathrm{H}$).
(d) Treatment of the 15 -methyl Δ^{15}-17-ketone 5a (200 mg , 0.68 mmol) with ethylmagnesium iodide in the presence of copper(I) iodide (cf. preparation of compound 2b) gave $15 \beta-$ ethyl-3-methoxy-15x-methylestra-1,3,5(10)-trien-17-one 10d $(186 \mathrm{mg}, 84 \%)$, mp 104-107 ${ }^{\circ} \mathrm{C}\left(\right.$ from $\left.\mathrm{Pr}^{\mathrm{i}}{ }_{2} \mathrm{O}\right)$; $[\alpha]_{\mathrm{D}}+90(c 1.0$, CHCl_{3}) (Found: $\mathrm{C}, 80.9 ; \mathrm{H}, 9.6 ; \mathrm{M}^{+}, 326 . \mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{2}$ requires C, $80.9 ; \mathrm{H}, 9.3 \% ; \mathrm{M}, 326) ; \Delta \varepsilon_{\text {max }}+2.30(294 \mathrm{~nm}) ; v_{\text {max }} / \mathrm{cm}^{-1}$ $1724 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 0.94\left(3 \mathrm{H}, \mathrm{t}, J 2 \times 7.6,15 \beta-\mathrm{CH}_{2} \mathrm{Me}\right), 1.09$ ($3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{Me}$), $1.22(3 \mathrm{H}, \mathrm{s}, 15 \alpha-\mathrm{Me}), 1.49(1 \mathrm{H}, \mathrm{d}, J 10.1$, $14 \alpha-\mathrm{H}$), 1.63 and 1.76 (each $1 \mathrm{H}, \mathrm{dq}, J 15.2$ and 3×7.6, $\left.15 \beta-\mathrm{CH}_{2} \mathrm{Me}\right), 1.87(1 \mathrm{H}, \mathrm{d}, J 19.3,16 x-\mathrm{H}), 2.27(1 \mathrm{H}$, ddt, J $12.8,5.2$ and $2 \times 2.6,7 \beta-\mathrm{H}), 2.80(1 \mathrm{H}, \mathrm{d}, J 19.3,16 \beta-\mathrm{H})$, $2.91\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 3.78(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OMe}), 6.64(1 \mathrm{H}, \mathrm{d}, J 2.8$, $4-\mathrm{H}), 6.71(1 \mathrm{H}, \mathrm{dd}, J 8.7$ and $2.8,2-\mathrm{H})$ and $7.21(1 \mathrm{H}, \mathrm{d}, J 8.7$, 1-H).
(e) Treatment of the 15 -ethyl Δ^{15}-17-ketone $\mathbf{5 b}$ ($124 \mathrm{mg}, 0.4$ $\mathrm{mmol})$ with ethylmagnesium iodide in the presence of copper(I) iodide (as in the foregoing experiment) gave 15,15-diethyl-3-methoxyestra-1,3,5(10)-trien-17-one 10 e ($122 \mathrm{mg}, 90 \%$), mp $111-113^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}-\operatorname{Pr}^{\mathrm{i}}{ }_{2} \mathrm{O}$); $[\alpha]_{\mathrm{D}}+94\left(\right.$ c $1.1, \mathrm{CHCl}_{3}$) (Found: C, 81.2; H, 9.5; M^{+}, 340. $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{2}$ requires C, 81.1; $\mathrm{H}, 9.5 \% ; \mathrm{M}, 340) ; \Delta \varepsilon_{\max }+2.99(293 \mathrm{~nm}) ; v_{\max } / \mathrm{cm}^{-1} 1725(\mathrm{CO}):$ $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 0.87$ and 0.93 (each $3 \mathrm{H}, \mathrm{t}, J 2 \times 7.4,15 \alpha$ - and $\left.15 \beta-\mathrm{CH}_{2} \mathrm{Me}\right), 1.10(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{Me}), 1.42,1.55,1.65$ and 1.65 (each $1 \mathrm{H}, \mathrm{m}, 15 \alpha$ - and $15 \beta-\mathrm{CH}_{2} \mathrm{Me}$), $1.49(1 \mathrm{H}, \mathrm{d}, J 10.1$, $14 \alpha-\mathrm{H}), 1.95(1 \mathrm{H}, \mathrm{d}, J 19.6,16 \alpha-\mathrm{H}), 2.25(1 \mathrm{H}, \mathrm{ddt}, J 12.9,5.3$ and $2 \times 2.5,7 \beta-\mathrm{H}), 2.64(1 \mathrm{H}, \mathrm{d}, J 19.6,16 \beta-\mathrm{H}), 2.87(2 \mathrm{H}, \mathrm{m}$, $6-\mathrm{H}_{2}$), 3.77 ($3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OMe}$), $6.62(1 \mathrm{H}, \mathrm{d}, J 2.8,4-\mathrm{H}), 6.70(1 \mathrm{H}$, dd, $J 8.7$ and $2.8,2-\mathrm{H}$) and 7.20 ($1 \mathrm{H}, \mathrm{d}, J 8.7,1-\mathrm{H}$).

15,15-Dialkyl-3-methoxyestra-1,3,5(10)-trien-173-ols 11

General procedure. Lithium aluminium hydride ($3-5 \mathrm{~mol}$ equiv.) was added to a solution of the dialkyl ketone 10 ($0.15-$ 0.3 mmol) in dry THF ($3-6 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 5 min . Saturated aq. NaHCO_{3} was added and the mixture was filtered. Work-up of the filtrate (EtOAc) gave the 17β-alcohol 11 .
(a) 3-Methoxy-15,15-dimethylestra-1,3,5(10)-trien-17ß-ol 11a (85%), mp $87-91^{\circ} \mathrm{C}$ (from CHCl_{3}-hexane); $[\alpha]_{\mathrm{D}}+75$ (c 1.1, CHCl_{3}) (Found: C, 80.0; H, 9.5; $\mathrm{M}^{+}, 314 . \mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{2}$ requires C, $80.2 ; \mathrm{H}, 9.6 \%$; M, 314); $v_{\text {max }} / \mathrm{cm}^{-1} 3606(\mathrm{OH}) ; \delta_{\mathrm{H}}(200 \mathrm{MHz})$ $0.92(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{Me}), 1.06(1 \mathrm{H}, \mathrm{d}, J 11.2,14 \alpha-\mathrm{H}), 1.11$ and 1.14 (each $3 \mathrm{H}, \mathrm{s}, 15 \alpha$ - and $15 \beta-\mathrm{Me}$), 1.61 (1 H , dd, $J 13.0$ and 10.2 , $16 \alpha-\mathrm{H}), 1.9(1 \mathrm{H}, \mathrm{dd}, J 13.0$ and $7.9,16 \beta-\mathrm{H}), 2.86\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right)$,
$3.71(1 \mathrm{H}, \mathrm{dd}, J 10.2$ and $7.9,17 \alpha-\mathrm{H}$), 3.77 ($3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OMe}$), 6.62 $(1 \mathrm{H}, \mathrm{d}, J 2.7,4-\mathrm{H}), 6.71(1 \mathrm{H}, \mathrm{dd}, J 8.6$ and $2.7,2-\mathrm{H})$ and 7.21 (1 H, d, J8.6, 1-H).
(b) 15 15 -Ethyl-3-methoxy-15 3 -methylestra-1,3,5(10)-trien17β-ol $11 \mathrm{~b}(89 \%)$, mp 133-136 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}-\mathrm{MeOH}$); $[\alpha]_{\mathrm{D}}$ +67 (c $0.9, \mathrm{CHCl}_{3}$) (Found: C, 80.0; H, 9.7; $\mathrm{M}^{+}, 328$. $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{2}$ requires C, $80.4 ; \mathrm{H}, 9.8 \% ; \mathrm{M}, 328$); $v_{\text {max }} / \mathrm{cm}^{-1} 3604$ $(\mathrm{OH}) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 0.88\left(3 \mathrm{H}, \mathrm{t}, J 2 \times 7.2,15 \alpha-\mathrm{CH}_{2} \mathrm{Me}\right), 0.93$ ($3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{Me}$), $1.06(3 \mathrm{H}, \mathrm{s}, 15 \beta-\mathrm{Me})$, $1.10(1 \mathrm{H}, \mathrm{d}, J 11.1,14 \alpha-$ H), 1.32 obsc ($\left.2 \mathrm{H}, \mathrm{m}, 15 \alpha-\mathrm{C} \mathrm{H}_{2} \mathrm{Me}\right) 1.39(1 \mathrm{H}, \mathrm{dd}, J 13.2$ and $10.0,16 \alpha-\mathrm{H}), 1.73(1 \mathrm{H}, \mathrm{qd}, J 3 \times 11.1$ and $2.3,8 \beta-\mathrm{H}), 1.87(1$ $\mathrm{H}, \mathrm{dt}, J 12.3$ and $2 \times 2.8,12 \beta-\mathrm{H}), 2.04(1 \mathrm{H}, \mathrm{dd}, J 13.2$ and 7.9 , $16 \beta-\mathrm{H}), 2.14(1 \mathrm{H}, \mathrm{ddt}, J 12.8,5.2$ and $2 \times 2.3,7 \beta-\mathrm{H}), 2.84(2 \mathrm{H}$, $\left.\mathrm{m}, 6-\mathrm{H}_{2}\right), 3.60(1 \mathrm{H}, \mathrm{dd}, J 10.0$ and $7.9,17 \alpha-\mathrm{H}), 3.77(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{O}$ $\mathrm{Me}), 6.61(1 \mathrm{H}, \mathrm{d}, J 2.9,4-\mathrm{H}), 6.70(1 \mathrm{H}, \mathrm{dd}, J 8.6$ and $2.9,2-\mathrm{H})$ and $7.20(1 \mathrm{H}, \mathrm{d}, J 8.6,1-\mathrm{H})$.
(c) 15a-Isopropyl-3-methoxy-15ß-methylestra-1,3,5(10)-trien17β-ol $11 \mathrm{c}(95 \%)$ as an oil, $[\alpha]_{\mathrm{D}}+54\left(c 1.3, \mathrm{CHCl}_{3}\right)$ (Found: C, 80.4; H, 9.9; $\mathrm{M}^{+}, 342 . \mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{2}$ requires C, $80.65 ; \mathrm{H}, 10.0 \%$; $\mathrm{M}, 342$); $v_{\text {max }} / \mathrm{cm}^{-1} 3604(\mathrm{OH}) ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 0.88$ and 0.92 (each $\left.3 \mathrm{H}, \mathrm{d}, J 6.8,15 \alpha-\mathrm{CH} M e_{2}\right), 0.96(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{Me}), 1.13(3 \mathrm{H}, \mathrm{s}$, $15 \beta-\mathrm{Me}), 1.45(1 \mathrm{H}, \mathrm{d}, J, 11.4,14 \alpha-\mathrm{H}), 1.73(1 \mathrm{H}, \mathrm{dd}, J 13.4$ and $10.2,16 \alpha-\mathrm{H}), 1.88(1 \mathrm{H}, \mathrm{dt}, J 11.2$ and $2 \times 2.4,12 \beta-\mathrm{H}), 2.13(1$ $\mathrm{H}, \mathrm{dd}, J 13.4$ and $7.9,16 \beta-\mathrm{H}), 2.31(1 \mathrm{H}, \mathrm{td}, J 2 \times 10.1$ and 3.5 , $9 \alpha-\mathrm{H}), 3.54(1 \mathrm{H}, \mathrm{dd}, J 10.2$ and $7.9,17 \alpha-\mathrm{H}), 3.78(3 \mathrm{H}, \mathrm{s}, 3-$ OMe), $6.64(1 \mathrm{H}, \mathrm{dd}, J 2.7,4-\mathrm{H}), 6.71(1 \mathrm{H}, \mathrm{dd}, J 8.5$ and $2.7,2-$ H) and $7.22(1 \mathrm{H}, \mathrm{d}, J 8.5,1-\mathrm{H})$.
(d) 15ß-Ethyl-3-methoxy-15 α-methylestra-1,3,5(10)-trien17β-ol $11 \mathrm{~d}(90 \%)$ as an oil, $[\alpha]_{\mathrm{D}}+70\left(c 1.0, \mathrm{CHCl}_{3}\right)$ (Found: C, $80.1 ; \mathrm{H}, 9.7 ; \mathrm{M}^{+}, 328 . \mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{2}$ requires $\mathrm{C}, 80.4 ; \mathrm{H}, 9.8 \% ; \mathrm{M}$, $328) ; v_{\text {max }} / \mathrm{cm}^{-1} 3604(\mathrm{OH}) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 0.88(3 \mathrm{H}, \mathrm{t}, J 2 \times 7.2$, $\left.15 \beta-\mathrm{CH}_{2} M e\right), 0.90(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{Me}), 1.10(3 \mathrm{H}, \mathrm{s}, 15 \alpha-\mathrm{Me}), 1.13$ ($1 \mathrm{H}, \mathrm{d}, J 11.5,14 \alpha-\mathrm{H}$), $1.28(1 \mathrm{H}, \mathrm{td}, J 2 \times 12.8$ and $3.2,12 \alpha-\mathrm{H}$), 1.51 obsc ($2 \mathrm{H}, \mathrm{m}, 15 \alpha-\mathrm{CH}_{2} \mathrm{Me}$), 1.73 obsc ($2 \mathrm{H}, \mathrm{m}, 16 \alpha$ - and $16 \beta-\mathrm{H}), 1.87(1 \mathrm{H}, \mathrm{dt}, J 12.8$ and $2 \times 3.2,12 \beta-\mathrm{H}), 2.84(2 \mathrm{H}, \mathrm{m}$, $6-\mathrm{H}_{2}$), 3.74 ($1 \mathrm{H}, \mathrm{dd}, J 9.9$ and $8.2,17 \alpha-\mathrm{H}$), 3.78 ($3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OMe}$), $6.63(1 \mathrm{H}, \mathrm{d}, J 2.8,4-\mathrm{H}), 6.71(1 \mathrm{H}, \mathrm{dd}, J 8.4$ and $2.8,2-\mathrm{H})$ and 7.21 ($1 \mathrm{H}, \mathrm{d}, J 8.4,1-\mathrm{H})$.
(e) 15,15-Diethyl-3-methoxyestra-1,3,5(10)-trien-17ß-ol 11e (94%) as an oil, $[\alpha]_{\mathrm{D}}+37\left(c 0.95, \mathrm{CHCl}_{3}\right)$ (Found: C, $80.4 ; \mathrm{H}$, $9.9 ; \mathrm{M}^{+}, 342 . \mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{2}$ requires $80.7 ; \mathrm{H}, 10.0 \%$; M, 342); $v_{\text {max }} / \mathrm{cm}^{-1} 3603(\mathrm{CO}) ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 0.86$ and 0.93 (each $3 \mathrm{H}, \mathrm{t}, J$ $2 \times 7.5,15 \alpha-$ and $\left.15 \beta-\mathrm{CH}_{2} \mathrm{Me}\right), 0.91(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{Me}), 1.19-$ $1.38\left(4 \mathrm{H}, \mathrm{m}, 15 \alpha-\mathrm{and} 15 \beta-\mathrm{CH}_{2} \mathrm{Me}\right), 1.88(1 \mathrm{H}, \mathrm{dt}, J 11.5$ and $2 \times 2.7,12 \beta-\mathrm{H}), 2.19(1 \mathrm{H}, \mathrm{m}, 7 \beta-\mathrm{H}), 2.85\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 3.62$ $(1 \mathrm{H}, \mathrm{dd}, J 9.0$ and $7.9,17 \alpha-\mathrm{H}), 3.78(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OMe}), 6.63(1 \mathrm{H}$, d, $J 2.7,4-\mathrm{H}), 6.71(1 \mathrm{H}, \mathrm{dd}, J 8.5$ and $2.7,2-\mathrm{H})$ and $7.22(1 \mathrm{H}, \mathrm{d}$, J 8.5, 1-H).

15,15-Dialkylestra-1,3,5(10)-triene-3,17p-diols 12

General procedure. A toluene solution of $1.5 \mathrm{~mol} \mathrm{dm}^{-3}$ DIBAH (5 mol equiv.) was added to a solution of the $15,15-$ dialkyl 17β-alcohol $11(0.1-0.2 \mathrm{mmol})$ in dry toluene ($5-10$ cm^{3}). The solution was refluxed for 24 h , cooled to $0^{\circ} \mathrm{C}$, and saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ was added. The aqueous phase was acidified with dil. hydrochloric acid. Standard work-up (EtOAc) gave the $3,17 \beta$-diol 12.

15,15-Dimethylestra-1,3,5(10)-triene-3,17ß-diol 12a (90\%), $\mathrm{mp} 167-170^{\circ} \mathrm{C}$ (from EtOAc); $[\alpha]_{\mathrm{D}}+49(c 1.1, \mathrm{EtOH})$ (Found: C, $79.6 ; \mathrm{H}, 9.3 ; \mathrm{M}^{+}, 300 . \mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{2}$ requires C, $80.0 ; \mathrm{H}, 9.4 \%$; M, 300).
15α-Ethyl-15 β-methylestra-1,3,5(10)-triene-3,17ß-diol 12b (92%), amorph., $[\alpha]_{\mathrm{D}}+59$ (c 1.0, EtOH) (Found: C, 79.8; H, 9.5%; $\mathrm{M}^{+}, 314$).

15 α-Isopropyl-15 β-methylestra-1,3,5(10)-triene-3,17 β-diol 12c $\left(90 \%\right.$), mp 201-205 ${ }^{\circ} \mathrm{C}$ (from EtOAc); $[\alpha]_{\mathrm{D}}+71$ (c 1.0, THF) (Found: C, 80.7; H, 9.8; $\mathrm{M}^{+}, 328 . \mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{2}$ requires $\mathrm{C}, 80.4$; H, 9.8%; M, 328).
15 β-Ethyl-15 α-methylestra-1,3,5(10)-triene-3,17ß-diol 12d $(94 \%), \mathrm{mp} \mathrm{1} 132-136^{\circ} \mathrm{C}$ (from EtOAc); $[\alpha]_{\mathrm{D}}+54(c 1.0, \mathrm{EtOH})$
(Found: C, 80.4; $\mathrm{H}, 9.5 ; \mathrm{M}^{+}, 314 . \mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{2}$ requires $\mathrm{C}, 80.2$; H, 9.6%; M, 314).
15,15-Diethylestra-1,3,5(10)-triene-3,17ß-diol 12e as a foam $(90 \%),[\alpha]_{\mathrm{D}}+72(c 1.0, \mathrm{EtOH})$ (Found: C, $80.0 ; \mathrm{H}, 9.7 ; \mathrm{M}^{+}$, 328. $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{2}$ requires $\mathrm{C}, 80.4 ; \mathrm{H}, 9.8 \% ; \mathrm{M}, 328$).

Acknowledgements

We thank the Foundation for Research Development, the University of Cape Town and Schering AG for financial and material support.

References

1 J. R. Bull and R. I. Thomson, J. Chem. Soc., Perkin Trans. I, 1990, 241; J. R. Bull, R. I. Thomson, H. Laurent, H. Schröder and R. Wiechert, Ger. Pat. DE 3628 189, 1988 (Chem. Abstr., 1988, 109, 129451w).
2 J. R. Bull, P. G. Mountford, G. Kirsch, G. Neef, A. MüllerFahrnow and R. Wiechert, Tetrahedron, 1994, 50, 6363; G. Kirsch, G. Neef, H. Laurent, R. Wiechert, J. R. Bull, P. Esperling, W. Elger and S. Beier, Ger. Pat. DE 3939 894, 1989 (Chem. Abstr., 1991, 115, 136493p).

3 R. V. Coombs, US Pat. 3766 224, 1973 (Chem. Abstr., 1974, 80, 27436k); M. B. Groen and F. J. Zeelen, Recl. Trav. Chim. Pays-Bas, 1979, 98, 239.
4 E. W. Cantrall, R. Littell and S. Bernstein, J. Org. Chem., 1964, 29, 64, 214; O. Schmidt, K. Prezewowsky, G. Schulz and R. Wiechert, Chem. Ber., 1968, 101, 939; I. M. Clark, W. A. Denny, E. R. H. Jones, G. D. Meakins, A. Pendlebury and J. T. Pinhey, J. Chem. Soc., Perkin Trans. 1, 1972, 2765; G. Bojack and H. Kunzer, Tetrahedron Lett., 1994, 35, 9025.
5 D. Poirier, Y. Mérand and F. Labrie, Tetrahedron, 1991, 47, 7751.
6 C. Blanch, F. Camps and J. Coll, An. Quim., 1978, 74, 532.
7 S. A. Godleski, in Comprehensive Organic Synthesis, ed. B. M. Trost and I. Fleming, Pergamon Press, 1991, vol. 4, ch. 3.3 and refs. cited therein.
8 J. R. Williams and J. D. Leber, Synthesis, 1977, 427.
9 M. V. Bhatt and S. U. Kulkarni, Synthesis, 1983, 249 and refs. cited therein.
10 D. N. Kirk, Tetrahedron, 1986, 42, 777 and refs. cited therein.

[^0]: * Performed at the Institute of Medicinal Chemistry, Schering AG, Berlin.

